
Static Analysis for Malware Classification Using
Machine and Deep Learning

M.I.P. Salas∗†, Paulo de Geus∗
∗ University of Campinas, Campinas, SP, Brazil - Email: {mpalma, paulo}@lasca.ic.unicamp.br

† Universidad Mayor de San Andrés, La Paz, Bolivia

Abstract—Malware, or malicious software, is a general term
to describe any program or code that can be harmful to systems.
This hostile, intrusive, and intentionally harmful code makes
use of a variety of techniques to protect and evade detection
and removal through code obfuscation, polymorphism, metamor-
phism, encryption, encrypted communication, and more. Current
state-of-the-art research focuses on the application of artificial
intelligence techniques for the detection and classification of
malware. In this context, this paper proposes a new malware
classification through static analysis using seven machine learning
algorithms (LightGBM, XGBoost, Logistic Regression, KNN,
SVM, Naive Bayes, and Random Forest) and deep learning fine-
tuning. These models make use of the SelectKBest technique
within data engineering, allowing the selection of the 892 most
relevant characteristics for the classification of 10868 malware
in 9 families, reducing overfitting and training time. The results
show that the application of Gradient Boosting algorithms such
as LightGBM with hyperparameter optimization exceeds the ref-
erence results in competitions such as Kaggle, with a logarithmic
loss 0.00118, an accuracy close to 100%, and prediction times
less than 2.3ms. Fast enough to be applied to systems in real time
to classify malware.

Index Terms—malware classification, static analysis, Selec-
tKBest, lightgbm, machine learning, deep learning

I. INTRODUCTION

In the era of the Internet of Things (IoT), where every
device is a functional computer susceptible to malware in-
fection, there is a need for new detection techniques. Current
antivirus solutions are highly effective and absolutely essential
for detecting and eliminating malware. However, they have
a weakness: they need to wait for samples of a particular
malware to be obtained in order to be analyzed, create its
signature, establish a cleaning procedure, and thus be able to
eliminate it from production systems [1], [2].

To detect and classify each new piece of malware, an-
tivirus companies apply a reactive approach, which involves
collecting samples through honeypots or antivirus software
running on client machines [3]. Malware samples are stored
and executed in automated analysis systems, such as Cuckoo
[4], providing information on their behavior, flaws, and errors
that abuse applications and operating systems. With this in-
formation, antivirus software can be extended to identify the
new malware and classify it.

The increased connectivity between applications and de-
vices has brought about a greater spread of malware, e.g.,
Emotets [5]. As a result, thousands of devices became infected
within hours, reducing the effectiveness of antivirus software

to detect new threats and requiring constant updates to their
signatures.

New methods and techniques of obfuscation, polymorphism,
and compression are used by developers to make malware
detection more difficult and to disable security software (such
as IDS, antivirus, and firewalls, among others) [6]. The high
increase in malware, not only for Windows OS and Android
OS, allows us to see that this security problem needs further
research.

Machine learning and deep learning allow to analyze the
pattern of behavior and activities of an application to be
classified within a family of malware, particularly using static
and dynamic analysis. Thus, by verifying that a program is
performing potentially harmful actions, it is possible to classify
it, analyze it, and better understand the security threats and
risks. Consequently, it will help improve security solutions
and strategies to prevent and mitigate future attacks.

In this research, we propose a new methodology for mal-
ware classification of portable executable (PE) files through
static analysis using seven machine learning algorithms (Light-
GBM, XGBoost, Logistic Regression, KNN, SVM, Naive
Bayes, and Random Forest) and deep learning with fine-
tuning for the classification of 10,868 malware samples into
9 families. To reduce overfitting, we use the SelectKBest
technique within data engineering, reducing the number of
features from 84,611 to just 892 more relevant features,
controlling the training time.

The results show that the application of gradient boosting
algorithms, such as LightGBM or XGBoost, with hyperparam-
eter optimization improves reference results in competitions
such as the Microsoft Malware Classification Challenge [7]
on Kaggle, reducing the best score from 0.00283 to 0.00118,
with accuracy close to 1 and execution times of less than 2.3
ms. It is fast enough to be applied to gadgets in real-time to
classify malware.

The rest of the document is divided as follows: Section
II describes the related work on malware classification using
machine learning approaches. In Section III, we analyze the
PE files and describe the evolution of malware. Section IV
describes the software analysis processes, delving into static
analysis. The malware classification methodology is developed
in Section V, concluding with the research results. The main
contributions and future work are described in Section VI.

II. RELATED WORK

According to recent studies [5], [8], there is an alarming
increase in malware attacks. The increase in attacks is due
to a combination of factors, including the growth of internet-
connected devices, the increase of remote work as a work
modality after the COVID-19 pandemic started, and the use
of more sophisticated techniques by attackers.

Machine learning can be an attractive tool for the detection
and classification of malware. Thus, Hyrum and Phil [9]
present EMBER, a benchmark dataset for training machine
learning models to detect malicious Windows portable exe-
cutable (PE) files statically. The database of over one million
benign and malignant samples was tested with the LightGBM
algorithm with default parameters (100 trees, 31 leaves per
tree), resulting in fewer than 10K tunable parameters and a
detection rate of about 93% without hyper-parameter optimiza-
tion.

In [10], Barker et al. present MalConv, a convolutional
neural network architecture that works by processing entire
executable files in raw byte format to detect malware. This
technique focuses on analyzing malicious binary files to detect
the presence of hidden patterns in their content through the
use of byte n-grams and PE-Header as important information.
Being one of the first deep network architectures for malware
detection, it achieved 92.5% accuracy in malware identifica-
tion.

Gibert et al., in [11], use a set of metamorphic malware
to test the accuracy of known CNN architectures in malware
detection and find that these models are susceptible to meta-
morphic attacks. Thus, the authors propose a shallow CNN
architecture to counteract this code obfuscation technique, ob-
taining 97.48% under the mentioned architecture and 97.65%
with data aggregation.

In [12], the authors introduce an innovative real-time mal-
ware detection approach based on network data stream anal-
ysis using a convolutional neural network architecture. Fur-
thermore, they propose a learning transfer approach through
pre-trained networks to improve the accuracy of malware
detection. Both the detection and classification of malware are
evaluated in machine learning and deep learning architectures
using different databases, reaching an accuracy of 98.4

Han et al. [13] present a systematic approach to detecting
malware using three-level characteristics (basic or static, low-
level behavior, and high-level behavior) of malicious and
benign files rather than relying solely on virus signatures or file
structure characteristics. After extracting relevant information
from the malware through Cuckoo SandBox, the authors use
four machine learning models, concluding that Random Forest
has the best accuracy (97.21%). This research shows that the
robustness of the malware analysis model lies in the extraction
and categorization of malicious code features.

The authors in [14] discusses the traditional approaches used
for malware detection, including virus signatures, heuristics,
and dynamic analysis. More advanced approaches, such as
static and dynamic analysis based on machine learning and

deep learning, are also described. It is concluded that none
of the traditional and more advanced approaches can detect
and classify all types of malware, especially zero-days. New
researchers will be guided to use combined approaches to
create new architectures.

III. BACKGROUND

Malware is malicious software that can cause serious dam-
age to computer systems and user privacy. In this section, we
justify the malware classification research.

A. PE File Format

The PE (Portable Executable) file format is an executable
file standard used in 32 and 64 bit in Windows operating
systems. The term portable refers to the format’s versatility
in numerous operating system software architecture environ-
ments. On Windows NT-based, the file types EXE, DLL, SYS
(device drivers), and other, used the PE format [15].

Fig. 1: The 32-bit PE file structure of ransomware WannaCry.

The PE format is a data structure that encapsulates the
information needed by the Windows loader. This includes the
dynamic linker to allocate the file in memory and create the
references to the libraries, the import and export of API tables,
resource data management, and thread local storage data (TLS
data).

The PE file consists of a header and one or more segments,
as shown in Fig. 1. The header contains important information
about the file structure, such as the input address, the location
of the segments, and the amount of resources and data it con-
tains. The segments contain the executable code and the data
necessary for the application to run correctly. These segments
can include the application code, data tables, resources, and
other components.

The executable code inside the PE file consists of opcodes
that tell the CPU what action to perform, such as moving data
between registers, performing arithmetic-logical operations,
jumping to a specific memory address, and so on. These
opcodes are inside the segments that contain the executable
code. Additionally, executable code within the PE file can

make use of registers, which are storage areas on the CPU
that are used to store temporary data during the execution of
an application.

PE files can also make use of function calls and APIs to
access functions and resources in the OS and other software
libraries. These calls can be made by executable code within
a PE file to perform specific tasks required for the application
to run, such as reading and writing files, interacting with the
operating system and other programs, and performing network
operations.

More information about the PE file format can be found in
[16] and [15].

B. Types of Malware

Malware has evolved from simple viruses that spread across
disks and networks to sophisticated cyberattacks that can
steal personal information, extort money from users, and turn
devices into zombies for third-party attacks. Here are some of
the most common types [6]:

• A virus infects computers and files by replicating itself
and spreading when that program is run, causing system
performance degradation and denial of service.

• Worms are a self-replicating type of malware that can
spread across networks, consuming network and com-
puter resources, which can lead to system performance
degradation.

• A Trojan horse disguises itself as legitimate software but
actually contains malicious code. It can be used to steal
data, spy on a device, or launch attacks on other systems.

• Rootkits allow hackers to gain privileged access to a
system and hide their activities from detection.

• Spyware keeps watch on a user’s activities and secretly
collects information from a computer or device, often
including personal data. It then sends the information
back to the hacker.

• Keyloggers are a type of spyware used to record
keystrokes and steal sensitive information like passwords
and credit card numbers.

• Adware displays unwanted ads on a computer or mobile
device, slowing down the system and being difficult to
remove.

• A backdoor is designed to bypass a system’s security
mechanisms and install itself on a computer, allowing
the attacker to access it.

• A botnet is a network of infected computers that can
be controlled remotely by an attacker using a Command
and Control (C&C) server. This malicious network uses
a software called a bot that allows an attacker to con-
trol infected computer devices. Botnets can be used to
carry out Distributed Denial of Service (DDoS) attacks,
send spam messages, and steal information over the Tor
network.

• Ransomware encrypts the victim’s files and demands
a ransom payment in exchange for the decryption key.
There is no guarantee that the encrypted information will
be returned.

C. Advanced Malware Protection Techniques

Malware techniques use a variety of methods to hide them-
selves from malware detectors, including [6]:

Fig. 2: Encrypting the code and decrypting it at runtime to
avoid detection.

• Polymorphism: changing the code structure of the mal-
ware to evade signature-based detection.

• Metamorphism: changing the code structure and behav-
ior of the malware at runtime to avoid static and dynamic
analysis.

• Code obfuscation: modifying the code to make it diffi-
cult to read and analyze by human or automated tools.

• Encryption: encrypting the malware code and decrypting
it at runtime to avoid detection, as shown in Fig. 2.

• Rootkit: modifying the operating system to hide the
presence of the malware and its activities.

• Virtualization: running the malware in a virtual machine
environment to avoid detection and analysis by malware
detectors.

• Anti-debugging: detecting and avoiding analysis at-
tempts by debugger tools to prevent detection.

D. Malware Detection Techniques

There are several techniques that can be used for malware
detection. Combining these techniques can lead to more effec-
tive malware detection, classification, and prevention. Some of
the techniques include:

• Signature-based detection: This technique involves
comparing the digital signature or hash of a file to a
known database of signatures of known malware. If a
match is found, the file is flagged as malicious [2].

• Heuristic-based detection: This technique uses a set of
rules or algorithms to analyze the behavior of a file or
program and determine if it is likely to be malicious [2].

• Behavior-based detection: This technique involves mon-
itoring the behavior of a file or program in real-time to
detect any suspicious activity or deviations from normal
behavior [8].

• Machine learning-based detection: This technique uses
machine learning algorithms to analyze large datasets of
known malware to detect new, classified and emerging
threats [9], [11], [19], [19].

TABLE I: Advanced techniques to Protect Malware [17], [18].

Anti-Analysis Static Analysis Method
techniques Code and Data Flow Signature API Calls and Function Decompilation Obfuscation
Polymorphism X X - - -
Metamorphism X X - - -
Code obfuscation X X X X X
Packing - X - X X
Anti-debugging X X X X X
Rootkit X - - - -
Virtualization X - - X -
Encryption - - X - X
Dynamic code generation - - - - X

• Sandboxing: This technique involves running a file or
program in a virtual environment to observe its behavior
and detect any malicious activity [4].

• YARA rules: YARA is a tool used for pattern matching
of malware, enabling users to write custom rules for
detecting specific malware [4].

IV. MALWARE ANALYSIS

The processes used to study, identify, and understand the
behavior and characteristics of malicious code are known as
malware analysis. It involves studying malicious files in order
to better understand various aspects of the malware, such
as behavior, evolution over time, and selected targets [17].
Additionally, by using these processes, malware analysts can
gain a better understanding of how malware works, its capa-
bilities, and its potential impact and can help develop effective
detection, classification, and mitigation strategies [17]. The
following are some commonly used malware analysis pro-
cesses described in Fig. 3:

Fig. 3: Malware analysis processes and features.

A. Static analysis

This process involves examining the binary code and struc-
ture of a malware sample without executing it. The pro-
cess involves analyzing the code structure, syntax, and other
static properties to identify potential security vulnerabilities,
malicious behavior, or other characteristics that can help in
determining whether the code is malicious or not.

This process is effective in detecting well-known malware
strains, especially when it is combined with other methods,
e.g., decompilation analysis and API calls and function anal-
ysis, even when malware developers make use of advanced
techniques to protect malware, as seen in Table I.

Static analysis can be performed manually or with the help
of automated tools, as shown in Table II. It is often used in
conjunction with dynamic analysis techniques to provide a
comprehensive view of the malware’s behavior. Commonly
employed static analysis methods include:

• Code and Data Flow Analysis: It involves analyzing the
code structure and how it interacts with data to understand
the behavior of the malware. This technique helps to
identify the malware’s functionality, such as whether it
steals data or creates a backdoor. The analyst can use a
CFG (Control Flow Graph) to capture the behavior of a
PE file and extract the program structure. The researcher
can make use of Ghidra1 and Radare22, among other
tools, to apply this method.

• Signature Analysis: It involves the use of predefined
signatures or patterns to identify known malware. It works
by comparing the code or binary file of a suspected
malware sample with a database of known malware sig-
natures. To create a malware signature, the researches use
tools as shown in Table II. This technique is effective in
detecting well-known malware strains, but it is not useful
in detecting new or unknown malware. The researcher can
make use of Yara Rules3, VirusTotal4 and Snort5, among
other tools, to apply this method.

• API Calls and Function Analysis: It involves analyzing
the API calls (short for Application Programming Inter-
face) and function used by the malware to gain insights
into its behavior. This technique helps in identifying the
malware’s capabilities, such as whether it has rootkit
functionality or creates new processes. The researcher can
make use of OllyDbg6 and x64dbg7, among other tools,
to apply this method.

1https://ghidra-sre.org/
2https://rada.re/n/
3https://github.com/Yara-Rules/rules
4https://www.virustotal.com/gui/
5https://www.snort.org/
6https://www.ollydbg.de/
7https://x64dbg.com/

TABLE II: Tools for Malware Static Analysis [17], [18].

Tools for Static Analysis Method
static analysis Code and Data Flow Signature API Calls and Function Decompilation Obfuscation
Antivirus software - X - - -
YARA - X - - -
VirusTotal - X - - -
Snort - X - - -
IDA Pro X X X X X
PEiD - X - - -
Sysinternals - X - - -
Ghidra X - - X -
OllyDbg - - X - X
x64dbg - - X - -
Radare2 X - X - X
Opcode X X - X X
N-grams X - X X X

• Decompilation: It involves converting the malware code
into a high-level programming language to understand
its behavior better. This technique helps in identifying the
malware’s functionality and the vulnerabilities it exploits.
The researcher can make use of IDA Pro and Opcodes8,
among other tools, to apply this method.

• Obfuscation Analysis: It involves identifying and ana-
lyzing the obfuscated code to reveal the malware’s true
behavior. This technique helps to identify the malware’s
capabilities, such as whether it tries to hide its presence or
uses anti-debugging techniques. The researcher can make
use of IDA Pro and OllyDbg, among other tools, to apply
this method.

Static analysis can improve the malware classification pro-
cess by providing a quick and efficient way to analyze large
numbers of files. By using automated tools to scan files for
known malware signatures or suspicious behavior, analysts
can quickly triage files and focus their efforts on the most
promising cases.

Static analysis can also be used to extract features from
malware samples that can be used to train machine learning
models for classification. By analyzing the code or binary of a
malware sample, features such as function calls, API calls, and
string literals can be extracted and used as input to a machine
learning model. These models can then be used to classify new
malware samples based on their similarity to known malware
families or behaviors.

Some techniques used in static analysis are described below.
1) Opcodes: are an integral part of a machine code in-

struction, which specifies the operation that the CPU needs to
perform. A complete machine language instruction consists of
an opcode along with one or more operands, such as ”mov
eax 7”, ”add eax ecx”, and ”sub ebx 1”. Opcodes can be
utilized as a feature in malware detection by analyzing the
frequency of opcodes or determining the similarity between
opcode sequences [17].

In opcode analysis, the malware analyst examines the
opcode sequences to identify patterns and understand the
function of the code. For example, a sequence of opcodes

8http://ref.x86asm.net/coder32.html

may indicate that the code is opening a network connection,
downloading additional code, or modifying system files. This
information can be used to identify the malware’s capabilities
and potential impact on a system.

Opcode analysis can be performed manually, by examining
the assembly language code line by line, or with the help
of automated tools, such as disassemblers or decompilers.
These tools can identify and extract the opcodes from the
code, making it easier for analysts to identify patterns and
understand the behavior of the malware.

2) N-grams: analysis is a technique used in natural lan-
guage processing and text mining to analyze and understand
the structure of text data. It involves breaking down a text
into contiguous sequences of n items, such as words or
characters, and then counting the frequency of occurrence of
each sequence [18].

For example, in a sequence of words like ”This program
cannot be run in DOS mode”, the 3-grams would be: ”This
program cannot”, ”program cannot be”, ”cannot be run”, ”be
run in”, and ”run in DOS”, ”in DOS mode”.

In malware analysis, n-grams analysis is used to identify
patterns and similarities between different samples of malware.
By analyzing the frequency of occurrence of n-grams in
different samples, researchers can identify common sequences
of code or behavior that may indicate the presence of malware.

B. Dynamic analysis

Dynamic analysis involves analyzing the behavior of mal-
ware as it runs on a system or in a controlled environment.
This approach involves executing the malware in a sandbox,
bare metal9 environment, or virtual environment, which allows
the analyst to observe its behavior without risking infection or
damage to the host system [6].

During dynamic analysis, the analyst monitors the mal-
ware’s actions, such as file system modifications, network
communication, process creation, and registry changes. They
may use tools such as debuggers, disassemblers, and net-
work monitors to capture and analyze this behavior. Also,
this process can help analysts understand the purpose and

9A ”bare metal” environment is a physical machine on which the operating
system is installed directly on the hardware without any hypervisor in between.

functionality of the malware, identify its command and control
infrastructure, and determine the extent of its impact on the
system.

This malware analysis use uses several techniques and
processes to analyze malware behavior during execution. Some
of these techniques and processes are:

• Sandbox Analysis: involves running the malware in a
controlled environment, such as a virtual machine, bare
metal or a sandbox, to observe its behavior. This approach
helps to protect the host system from infection and
damage caused by the malware.

• System Monitoring: The malware’s behavior is moni-
tored during this analysis using tools such as debuggers,
disassemblers, and network monitors. These tools help to
capture the malware’s interactions with the system and
network.

• Code Analysis: involves analyzing the malware’s code as
it executes. This can help in identifying specific functions,
system calls, and other behaviors that are used by the
malware.

• Memory Analysis: involves examining the malware’s
interactions with the system’s memory. This can help in
identifying memory-based attacks, such as buffer over-
flows or injection attacks.

• Behavioral Analysis: involves examining the malware’s
behavior to determine its purpose, capabilities, and in-
tended targets. This approach can help in identifying the
type of malware, such as a virus, worm, or Trojan.

• Signature Creation: can be used to create signatures
or rules that can be used to detect and prevent similar
malware attacks. These signatures can be used to enhance
the efficacy of existing security tools and to develop new
security mechanisms.

Dynamic malware analysis uses a combination of these
techniques and processes to gain an in-depth understanding
of the malware’s behavior during execution.

Malware developers use a range of techniques to protect
their malicious code, including anti-debugging techniques,
code obfuscation, and rootkit techniques, among others.

C. Hybrid analysis

Hybrid analysis in malware analysis refers to the use of
a combination of two or more different analysis techniques,
e.g., static and dynamic analysis, to examine and understand
a malware sample. This approach is used to overcome the
limitations of individual analysis techniques and gain a more
complete and accurate understanding of the behavior and
capabilities of the malware [13], [17].

This process can provide a more complete picture of the
malware’s features, including its code, execution flow, net-
work communications, and system-level interactions to detect,
classify, and delete malware, providing a more comprehensive
and accurate understanding of the malicious sample’s behavior
and capabilities.

Typically, hybrid malware analysis includes one or more
of the following processes: static analysis, dynamic analysis,
sandboxing analysis, memory analysis, and network analysis.

In the case of hybrid analysis, malware developers will
make use of protection techniques depending on the analysis
techniques that can be implemented by malware analyzers.

D. Memory analysis

This process provides a comprehensive examination of
malware hooks and code outside the function’s normal scope.
It uses memory images to analyze information about running
programs, the operating system, and the general state of the
computer. Memory forensics investigations pass through two
steps: memory acquisition and memory analysis. In memory
acquisition, the memory of the target machine is dumped
to obtain a memory image using tools such as Memoryze,
FastDump, and DumpIt. The memory analysis step is to
analyze the memory image, looking for malicious activities,
using tools like Volatility and Rekall [17], [6].

Memory analysis can be conducted using a variety of
tools and techniques, including specialized memory analysis
software, reverse engineering tools, and manual analysis of
memory dumps. It requires a deep understanding of operating
system internals, malware behavior, and memory management
principles.

Memory analysis employs various techniques to protect
itself from memory analysis and evade detection. Some of the
common techniques used by malware developers to protect
themselv es from memory analysis include anti-debugging
and anti-virtualization techniques, anti-memory forensics tech-
niques, rootkit techniques, and obfuscation techniques.

V. METHODOLOGY

A. Experiment settings

The runtime environment of the experiment includes (1)
ASUS nv580vd with an Intel® Core™ i7 7700HQ 2,8GHz
processor, 16 GB SDRAM, NVIDIA GeForce GTX 1050,
4GB GDDR5 VRAM, Ubuntu 20.04 LTS (64bit). (2) i440fx-
xenial. Intel Core i7 9xx (Nehalem Core i7, IBRS update),
8GB, Ubuntu 22.04 LTS.

B. Dataset Description

For the experiment we used the well-known Microsoft Mal-
ware Classification Challenge database. [7]. The experiment
dataset is almost 200GB, consisting of a set of 21736 known
malware files representing a mix of 9 different families, as
shown in Table III. Each malicious file has a 20 character hash
value uniquely identify, and a class label (1 to 9) representing
one of the nine family names.

Half of the malicious fileset (10868) is made up of raw data
with a hexadecimal representation of the file’s binary content,
without the header (to ensure sterility).

The rest of the malware samples (10868) are assembly
code files (ASM) obtained by reverse engineering with the
IDA disassembler tool10. These files contain metadata with

10https://hex-rays.com/ida-pro/

TABLE III: Malware Samples in the Dataset

Family Name # Train Samples Type
Ramnit 1541 Worm
Lollipop 2478 Adware
Kelihos ver3 2942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 TrojanDownloader
Kelihos ver1 398 Backdoor
Obfuscator.ACY 1228 Any kind of obfuscated malware
Gatak 1013 Backdoor

addresses, segments, opcodes, registers, function calls, APIs,
etc.

The data set can be downloaded from the competition
website11.

C. Malware Feature Extraction

First, a multivariate analysis was applied to analyze and
model the set of files with bytes and asm extensions in order to
find interdependent variables that could show the identification
of the nine malware families or classes in isolation. It will not
be possible to identify complex relationships or patterns in
both files, as can be seen in Fig. 4.

(a) Multivariate Analysis on
bytes files.

(b) Multivariate Analysis on
ASM files.

Fig. 4: Application of multivariate analysis in the bytes and
asm files to identify interdependent variables between the nine
malware families.

The next step was the application of data mining for feature
extraction. This data analysis process has the objective of
identifying patterns and features in a data set that, before being
processed, were unknown [14].

Therefore, it was decided to use N-grams for feature extrac-
tion. This natural language processing (NLP) and data mining
technique was used to analyze and understand the bytes and
ASM files (more information in IV-A2). This technique was
selected because it can be used in combination with other tech-
niques, such as machine learning and statistical techniques,
in order to identify patterns and develop more sophisticated
models for malware detection and classification [20].

It was decided to apply feature extraction of both file types
(bytes and ASM):

• Byte files’ size: size in Mb of the 10868 byte files.

11https://www.kaggle.com/competitions/malware-classification/

• Byte files’ unigram: Individual count of hexadecimal
values in byte files.

• Byte files’ bigram: count of two consecutive hexadecimal
values in bytes files.

• ASM files’ size: size in Mb of the 10868 asm files.
• key words’ individual count of consecutive x86 instruc-

tions consisting of registers, memory, and and Opcodes
in ASM files.

• ASM Opcodes’ bi-gram: count of two consecutive Op-
codes in ASM files.

• ASM Opcodes’ tri-gram: count of three consecutive Op-
codes in ASM files.

An analysis of the x86 assembly was carried out within the
ASM files, obtaining a total of 51 X86 instructions composed
of a set of 26 Opcodes, 13 prefixes, 9 registers, and 3
keywords, as shown in Table IV.

TABLE IV: X86 instructions consisting of registers, memory,
and, Opcodes in ASM files.

x86 Instr. # x86 Instr. # x86 Instr.
1 HEADER: 18 pop 35 jnb
2 .text: 19 xor 36 jz
3 .Pav: 20 retn 37 rtn
4 .idata: 21 nop 38 lea
5 .data: 22 sub 39 movzx
6 .bss: 23 inc 40 .dll
7 .rdata: 24 dec 41 std::
8 .edata: 25 add 42 :dword
9 .rsrc: 26 imul 43 edx
10 .tls: 27 xchg 44 esi
11 .reloc: 28 or 45 eax
12 .BSS: 29 shr 46 ebx
13 .CODE 30 cmp 47 ecx
14 jmp 31 call 48 edi
15 mov 32 shl 49 ebp
16 retf 33 ror 50 ebp
17 push 34 rol 51 eip

Malware classification uses Opcode analysis techniques
to examine the assembly language code of a program and
identify its behavior by analyzing the instruction sequences, or
operation codes, that are used in the code. Operation codes12

are the building blocks of machine language and represent
specific operations performed by a processor, such as moving
data, adding or subtracting values, and branching to other
sections of code. They also allow malware to be identified,
classified, and removed in conjunction with other techniques,
such as machine learning.

Prefixes13 help assemblers and compilers organize and map
the different parts of the program in memory and ensure
that they run correctly during program execution on the x86
architecture. Each of these segments fulfills a specific function
and contains instructions and data related to its purpose.

Registers14 act as temporary storage for data and instruc-
tions during the execution of a program. Its direct and fast

12wiki.osdev.org/X86-64 Instruction Encoding
13https://wiki.osdev.org/X86-64 Instruction Encoding
14https://www.cs.virginia.edu/ evans/cs216/guides/x86.html

access allows efficient performance in data processing and
operations at the lowest level of the processor architecture.

TABLE V: Features used to classify malware families.

Feature name Total Best tf. slct. %
Byte files’ size 1 1 100.0%
Byte files’ unigram 256 256 100.0%
Byte files’ bi-gram 65536 330 0.5%
ASM files’ size 1 1 100.0%
ASM instructions’ unigram 51 51 100.0%
ASM Opcodes’ bi-gram 676 77 11.4%
ASM Opcodes’ tri-gram 17576 176 10.0%
TOTAL 84098 892 1.1%

The next step was to use the SelectKBest15 function with
the Chi-squared statistical test to improve the accuracy of the
model and reduce training time. This feature selection function
in machine learning was used to select the best ”k” features
from the set of features extracted by data mining and n-grams
from Table V.

By reducing the dimensionality of the data, it was pos-
sible to reduce overfitting, reducing from 84098 features to
only 892, or 1.1%, of the features obtained by data mining,
guaranteeing that the selected data set is generalizable or
representative for the application of machine learning models
and malware classification.

D. Evaluation Metrics

In order to evaluate the performance with static analysis
and data mining, we use logloss. This evaluation measure,
commonly used for classification problems, allows us to
measure the discrepancy between the probabilities predicted by
the models used and the actual classes or families of malware.
For each instance in the data set, the log loss measured the
negative log probability that the model predicted the correct
family of malware. The smaller the log loss value, the better
the model will be in terms of classification accuracy.

The log loss is defined as:

log loss = −(1/N)∗
N∑
i=1

[yi∗log(ypred,i)+(1−yi)∗log(1−ypred,i)]

(1)
Where:

• N is the total number of instances in the data set.
• yi is the actual class variable (0 or 1) for the i instance.
• ypred,i is the probability predicted by the model that

instance i belongs to class 1.

Equation 1 shows the formula for log loss. This evaluation
measure can range from 0 to infinity, where a value of 0
indicates a perfect classification and an infinity value indicates
a complete misclassification. In practice, log loss values are
generally positive, and the closer the values are to zero, the
better the model performs.

15https://scikit-learn.org

E. Malware Classification

In recent years, there has been a rapid increase in the
number of academic studies on malware detection. In the early
days, signature-based detection method was widely used. This
method works fast and efficiently against the known malware,
but does not perform well against the zero-day malware.
With the exponential increase in malware, the use of machine
learning techniques became popular and became a standard for
the development of new models. Fig. 5 graphically describes
how our architecture works.

Fig. 5: Malware analysis architecture.

In this section, we perform the evaluation of machine
learning and deep learning models using the 892 features
selected with SelectKBest and normalized in the section V-C.

For the measurement of our malware classifier, we divided
the dataset into three sets: (1) the training set, (2) the validation
set, and (3) the test set, each containing 70%, 15%, and 15%
of malware samples, respectively. In Fig. 6, we observe the
malware classification approach through the application of
machine learning and DNN algorithms.

Regarding the deep neural network used for malware clas-
sification, it makes use of a Keras sequential model, which
has (1) an input layer of 892 neurons for the input of
features; (2) four dense layers with dimensions of 512, 256,
128, and 64 neurons with relu activation function; (3) four
intermediate layers of BatchNormalization to normalize the
output, improve the stability and convergence of the model,
and four intermediate layers of Dropout to avoid overfitting
with a value of 0.3; (4) The last dense layer has 9 neurons and
uses the softmax activation function, generating a probability
distribution over 9 malware classes. With this neural network,
100% precision was achieved with a log loss of 0.00153 for
the validation and 0.00241 for the test.

Table VI describes the results of the machine learning
approach executed with optimization by hyperparameterization
in all the models.

Fig. 6: Machine learning-based classification approach.

TABLE VI: Malware classification results by model, precision,
and log loss.

Model Val. Accu. Val. Logloss Test Accu. Test Logloss
Logistic Regre. 94.11% 0.47543 94.24% 0.48052
Random Forest 99.57% 0.02437 99.45% 0.02502
KNN 100.00% 0.00606 100.00% 0.00605
SVM 91.53% 0.25637 91.60% 0.25405
Naive Bayes 100.00% 0.00592 99.94% 0.01025
XGBoost 100.00% 0.00655 100.00% 0.00669
LightGBM 100.00% 0.00118 100.00% 0.00125
DNN 100.00% 0.00153 100.00% 0.00241

LightGBM is a decision tree-based machine learning algo-
rithm that has been shown to be effective in malware classi-
fication, for example [9]. According to the results obtained in
Table VI, LightGBM achieves 100% accuracy with a 0.00125
prediction probability error for the malware class.

A log loss value of 0.00125 indicates that the model has
excellent predictive power, as it is making accurate predictions
with very little error. Generally, a log loss value below 0.1 is
considered to indicate a very accurate model, while a value
above 2.0 indicates a very inaccurate model.

The function matrix is presented below in Fig. 7. As can
be seen, the entire main diagonal of the confusion matrix
has 100% value. This means that the model has managed to
classify each sample in the correct class without any error.

LightGBM is considered a lightweight and fast model due to
its leaf-based tree algorithm, random data sampling, memory
usage optimization, and its ability to be highly parallelizable.
These characteristics are observed in the training time (∼487
ms), the validation and testing time (∼127 ms), and the size
of the model (2.4 MB). These results make LightGBM an
excellent choice for problems with large data sets and limited
resources compared to other models such as deep neural
networks, XGBoost, or Naive Bayes.

Fig. 7: Confusion matrix of malware classification by the
LightGBM model.

F. Limitation

The results obtained in Section V-E demonstrate the effec-
tiveness and efficiency of the process for malware classifica-
tion. However, the system presents the following deficiencies
that must be improved for its application:

i. Fluctuation in classification accuracy: Splitting the data
set into three training sets does not guarantee the gen-
eralization of the model for malware classification. It is
suggested to use k-fold cross-validation to evaluate its
generalization capacity and obtain more precise results.

ii. Feature extension: You can add functions, procedures,
segments, and other keywords extracted from ASM files.
Generalization will further improve the model, but you
should avoid introducing too many features to avoid
overfitting.

iii. This model serves to classify malware into the nine
known classes or families. It does not predict whether
a file is malignant or benign. However, with a few
modifications and a new database, the model can be
modified and the expected results obtained.

iv. Given the characteristics of Microsoft Big 2015, it is not
possible to combine the dataset with other more current
ones since it uses paid tools such as Ida Pro to generate
the ASM files and modifies the binary files to sterilize
them (the procedure is not specified). In such a way that
new malware families cannot be included.

VI. CONCLUSIONS AND FUTURE WORK

Malware developers and security researchers are in a con-
stant race to get ahead and outperform their opponents. In
this constant race, malware developers are always looking
for ways to evade detection, while security researchers are
working on new techniques and tools to detect, classify, and
prevent attacks. In the constant struggle that requires resources,
skills, and knowledge to keep computer systems and networks
secure.

The growing threat of cyberattacks and the evolution of
malware with advanced protection techniques constantly drive

researchers to develop new approaches to malware detection,
classification, and removal.

The use of machine learning and deep learning techniques
for malware classification enables higher accuracy in malware
detection, which can be critical for early detection and preven-
tion of cyberattacks. These models can analyze large amounts
of data and detect hidden patterns that may not be detected
by traditional malware detection methods.

The present investigation describes the process of clas-
sifying 10,868 pieces of malware into nine families. The
data extraction allowed for the reduction of 892 features
(1.1%) through the SelectKBest technique. Eight classification
algorithms were applied (Logistic Regression, Random Forest,
K Neasrest Neighbor, Support Vector Machine, Naive Bayes,
XGBoost, LightGBM, and Deep Neural Network).

The results suggest that the LightGBM model is very
accurate and reliable to classify malware samples into nine
specific classes, obtaining 100% accuracy with a log loss of
0.00118 in the validation and 0.00126 in the test, improving
the result presented by the competition. from the Microsoft
Malware Classification Challenge, where the first three places
scored 0.00283, 0.00324, and 0.00396.

The application of deep neural networks generated very
satisfactory results, obtaining an accuracy of 100% with a log
loss of 0.00153 in the validation and 0.00241 in the test.

As future works:
1. The architecture in Fig. 6 can be implemented in convo-

lutional neural networks (CNNs).
2. It is also possible to apply this process to malware in the

wild for its detection and classification.
3. Given the features of Microsoft Big 2015, it is suggested

to take the following approaches: 1) Develop a procedure
for extracting malware features using static analysis; 2)
focus on the analysis of software malware in larger and
freely accessible databases.

ACKNOWLEDGMENT

Thank God for allowing me to continue contributing to the
development of malware analysis research from an artificial
intelligence perspective. To Professor Paulo Lı́cio de Geus for
guiding me in this new step, and my family for supporting
me.

REFERENCES

[1] W. Wang, R. Sun, T. Dong, S. Li, M. Xue, G. Tyson, and H. Zhu,
“Exposing weaknesses of malware detectors with explainability-guided
evasion attacks,” arXiv preprint arXiv:2111.10085, 2021.

[2] M. Botacin, F. Ceschin, P. De Geus, and A. Grégio, “We need to talk
about antiviruses: challenges & pitfalls of av evaluations,” Computers
& Security, vol. 95, p. 101859, 2020.

[3] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, “A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1851–1877, 2019.

[4] C. Guarnieri, A. Tanasi, J. Bremer, M. Schloesser, K. Houtman, R. Zut-
phen, and B. Graaff, “Cuckoo sandbox-automated malware analysis,”
URL: https://cuckoosandbox. org, 2021.

[5] O. Boyarchuck, S. Mariani, S. Ortolani, and G. Vigna, “Keeping up with
the emotets: Tracking a multi-infrastructure botnet,” Digital Threats:
Research and Practice, 2023.

[6] R. Tahir, “A study on malware and malware detection techniques,” In-
ternational Journal of Education and Management Engineering, vol. 8,
no. 2, p. 20, 2018.

[7] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ah-
madi, “Microsoft malware classification challenge,” arXiv preprint
arXiv:1802.10135, 2018.

[8] M. F. Botacin, P. L. de Geus, and A. R. A. Grégio, “The other guys:
automated analysis of marginalized malware,” Journal of Computer
Virology and Hacking Techniques, vol. 14, pp. 87–98, 2018.

[9] H. S. Anderson and P. Roth, “Ember: an open dataset for training static
pe malware machine learning models,” arXiv preprint arXiv:1804.04637,
2018.

[10] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” arXiv preprint
arXiv:1710.09435, 2017.

[11] D. Gibert, C. Mateu, J. Planes, and J. Marques-Silva, “Auditing static
machine learning anti-malware tools against metamorphic attacks,”
Computers & Security, vol. 102, p. 102159, 2021.

[12] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, and
S. Venkatraman, “Robust intelligent malware detection using deep
learning,” IEEE Access, vol. 7, pp. 46 717–46 738, 2019.

[13] W. Han, J. Xue, Y. Wang, Z. Liu, and Z. Kong, “Malinsight: A systematic
profiling based malware detection framework,” Journal of Network and
Computer Applications, vol. 125, pp. 236–250, 2019.

[14] Ö. A. Aslan and R. Samet, “A comprehensive review on malware
detection approaches,” IEEE Access, vol. 8, pp. 6249–6271, 2020.

[15] M. Pietrek, “An in-depth look into the win32 portable executable file
format, part 2,” MSDN Magazine, March, 2002.

[16] ——, “Peering inside the pe: a tour of the win32 (r) portable executable
file format,” Microsoft Systems Journal-US Edition, vol. 9, no. 3, pp.
15–38, 1994.

[17] R. Sihwail, K. Omar, and K. Z. Ariffin, “A survey on malware analysis
techniques: Static, dynamic, hybrid and memory analysis,” Int. J. Adv.
Sci. Eng. Inf. Technol, vol. 8, no. 4-2, pp. 1662–1671, 2018.

[18] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning
techniques for malware analysis,” Computers & Security, vol. 81, pp.
123–147, 2019.

[19] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. Nicholas, “Malware detection by eating a whole exe,” arXiv preprint
arXiv:1710.09435, 2017.

[20] A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection
approaches using data mining techniques,” Human-centric Computing
and Information Sciences, vol. 8, no. 1, pp. 1–22, 2018.

[21] H. El Merabet and A. Hajraoui, “A survey of malware detection tech-
niques based on machine learning,” International Journal of Advanced
Computer Science and Applications, vol. 10, no. 1, 2019.

