Large Scale Studies: Malware Needles in a Haystack
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Abstract. Malware overview reports are valuable information to understand
threats behavior and develop proper countermeasures. Currently, most of these
studies are focused on either fine-grained, individual sample analysis or coarse-
grained landscapes. On the one hand, only the first allows professionals to
handle specific security breaches. On the other hand, only the second allows
understanding threat scenario as a whole. We claim a complete security treat-
ment is only possible when combining both approaches. Therefore, in this work,
we present an analysis of a large malware dataset, showing the distinctions
between coarse-grained and fine-grained analysis results. We present both a
general threat scenario based on coarse-grained results as well as we detail our
fine-grained results to identify particular malicious constructions to antecipate
incident response of future threats.

1. Introduction

Malware is a constant threat to modern computer systems. To counter such kind of threat,
analysis procedures are employed, thus allowing vaccine development, remediation and
enabling forensic procedures,

Most of the current malware analysis research is presented in two forms: i) a
coarse-grained overview, highlighting only major aspects, discarding samples details; ii)
a fine-grained, specific view, focusing on implementation details, but not stating the risk
of such sample in the overall scenario.

We believe such approaches are complementary and security analyses must con-
sider both to provide a complete threat understanding. To support this claim, this work
presents a comparison of both approaches to highlight their differences and how they can
be integrated.

For our evaluation, we have considered a dataset of 135 thousand unique, real
binary samples. They were all submitted to static and dynamic analysis procedures and
their results were analyzed in both coarse and fine-grained ways. Our results demonstrate
that a coarse-grained analysis procedure allows us to draw a threat landscape but only a
fine-grained analysis procedure allows us to identify rare constructions.

This work is organized as follows: we motivate our work in Section 2; in Sec-
tion 3, we present our assumptions, data collection and analysis methods; in Section 4,
we present the threat landscape; in Section 5, we discuss the impact of our discoveries;
finally, we draw our conclusions in Section 6.



2. Motivation & Related Work

To exemplify how coarse and fine-grained analysis differ, consider the ransomware case.
An overview report states ransomware attacks have grown more than 50% [BBC 2017].
On the one hand, such kind of information is valuable for security planners as they need
to know what kind of attack their organizations will face in the future. On the other
hand, such report says nothing about how and where ransomware is growing—i.e. which
vulnerabilities are being exploited and/or techniques are being leveraged by attackers. In
summary, they knew what they need to do (protect against ransomware), but not how and
where.

Now, consider the opposite case. A fine-grained AV report evaluates the Erebus
ransomware [TrendMicro 2017], a Linux threat. The report details how the sample is
implemented, the affected directories, and so on. However, the report does not state
the impact of such sample, as it does not position Linux threats in the overall scenario
of computer systems. In a summary, it says where and how Linux servers should be
protected, but does not state its impact.

Given the above, we claim that only an integrated view can enable full under-
standing of malicious threats. The hereby presented research is an attempt towards such
direction. Therefore, this work is related to both coarse-grained and fine-grained research
work. Among the first group, we highlight the Bayer’s [Bayer et al. 2009] evaluation of
Windows binaries and the Lindorfer’s [Lindorfer et al. 2014] for Android ones. In this
work, we establish a global scenario as done in these. For the last group, enumeration is
not possible, as AV reports are released for many individual samples.

3. Methodology

In this section, we present the general methodology adopted in our work, such as sample
collection, separation and the performed analysis.

3.1. Dataset

In this work, we considered samples collected from the Malshare' database, a collection
of worldwide samples uploaded by security professionals. To investigate current threats,
we daily crawled the most recently available samples in the period from Dec/2016 until
May/2018. In total, we collected 242 thousand malicious objects, among which 141
thousand (58.5%) were unique binaries. Over these, 135 thousand (95.5%) were valid
binaries and exhibited some behavior during dynamic analysis.

3.2. Analysis Method

For both coarse and fine-grained analysis, we proceeded in the same way. All sam-
ples were both statically and dynamically analyzed [Sikorski and Honig 2012]. For
static analysis, we considered packers, identified using PEId?, anti-analysis tech-
niques, identified using Peframe?, and antivirus detection, by submitting samples to
Virustotal®. For dynamic analysis, we considered the logs from an internal sandbox
solution [Botacin et al. 2017]. The analyses were conducted as soon as the samples were
collected and further compiled in the hereby presented paper.
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3.3. Large Scale Support

Serial procedures are not efficient to handle a large collection of malware samples and re-
sults as they consume much time. Therefore, we developed a parallel analysis framework
for such task. Our pipeline is implemented in two stages: i) the first works on a producer-
consumer way, providing samples for analysis; ii) the second works on a map-reduce way,
consuming analysis results. A general view is presented in the Figure 1.
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The collector is the mechanism responsible for crawling samples (producer) and
scheduling them for analysis (mapper). The scheduler works by inserting the sample
identifier on a queue of each proceeding step. By having individual queues, we allow
each analyzer to run on their own speed, consuming data without delaying other analyz-
ers. In total, we have 7 analyzers (binary hasher, static analyzer, AV analyzer, network
protocol dissector, file-system log parser, process log parser and registry log parser), but
we opted to represent only 3 of them for the sake of simplicity. When an analyzer finishes
processing a given sample, the final information is sent to the committer (reduce), which
stores such information on the database. By having a single committer, we avoid blocking
the database for synchronization. The solution was implemented using Python and an
in-memory SQLite database running on a multi-core server.

In total, the analysis procedure of all samples took 36 hours, as shown in Figure 2.
When the solution starts, few tuples are inserted as the first stage have not parsed enough
data yet to fill the whole analysis buffer. As the analysis proceeds, the insertion rate is
increased. On average, our system was able to sustain a rate of 30M tuple insertions per
hour.

4. Analysis Results

In this section, we present and compare results of performing both coarse and fine-grained
sample analysis.



4.1. Coarse-grained Analysis

In this section, we present an overview of our dataset using the coarse-grained analysis
procedure. Our goal is to identify the main characteristics present in the samples set. To
do so, we considered static and dynamic analysis tools outputs as well as the network
traffic generated during samples execution.

Our dataset is entirely composed by 32-bit samples. Among these, only 0.35%
are DLLs, indicating an attackers’ preference by self-contained executables. Attackers
also prefer to rely on standard system libraries (60.42%) instead on third party ones. The
functions in these libraries are used to implement a myriad of behaviors, as presented in
Table 1.

Table 1. Most Imported Functions. Many distinct malicious behaviors are imple-
mented using default system libraries.

Class Function Samples (%) Class Function Samples (%)
Exitprocess 80.86% Messageboxa 50.70%
Getexitcodeprocess 37.16% Dispatchmessagea 50.25%
Deletefilea 35.90% Createwindowexa 48.76%
Termination Terminateprocess 35.26% Window Showwindow 46.32%
Exitwindowsex 34.87% Getwindowrect 27.22%
Enddialog 27.44% Setwindowpos 26.80%
Closeclipboard 24.63% Iswindowvisible 25.72%
Timing Sleep 76.48% Iswindowenabled 24.60%
Settimer 28.30% Getprocaddress 94.22%
Performance Gettickcount 67.02% Getmodulehan.dlea 73.72%
Queryperformancecounter 43.02% Getcommandlinea 73.60%
Fingerprinting Getsystemmetrics 39.29% Low Level Getcurrentprocess 69.36%
Isprocessorfeaturepresent 28.26% Isvalidcodepage 30.90%
Process Getcurrentthreadid 53.23% Encodepointer 26.82%
Getcurrentprocessid 40.29% Decodepointer 26.80%
Removal Removedirectorya 34.44% Anti Debug Isdebuggerpresent 31.14%
Deleteobject 27.46% Modularization Createprocessa 35.00%

We notice that most samples implement some kind of protection and/or evidence
removal procedures. By performing process termination, a sample may, for instance, kill
an AV solution. In addition, samples may also delete log files to cover their infection
steps.

Moreover, samples may also protect themselves by evading analysis procedures.
We observe both direct and indirect evasion attempts. Some samples opt to directly query
system about attached debuggers. Other samples opt to indirectly identify whether they
are under analysis, such as by querying system time and detecting possible performance
penalties imposed by monitoring solutions.

Regarding implementation, we discovered that most samples opt for implementing
graphic interfaces for user interaction instead of relying on stealth, background-based
processes. We also discovered that they opt to directly handle system internal structures,
such as pointers and pages, than relying on high-level abstractions.

Nevertheless, the aforementioned rates of malicious behaviors may only be con-
sidered as lower bounds, as samples may be obfuscated, thus hiding their real libraries and
functions imports. In total, 81.90% of all samples presented some code generation sig-
nature, either from a compiler (53.01%) or from a packer (46.99%). The most prevalent
signatures are presented in Table 2.



Table 2. Most Prevalent Signatures. Compilers are more prevalent than packers.

Signature Type Occurrence (%)
Microsoft Compiler 37.95%
Nullsoft PIMP  Installer 25.51%
Borland Delphi  Compiler 15.06%
UpPX Packer 4.23%
MSLHR Packer 2.25%
PEcompact Packer 1.66%

We observe that most samples are not packed, thus presenting ordinary compilers
signatures, such as Microsoft and Delphi. The Microsoft signature is the most
common, as most samples are written in C/C++. In addition, whereas most samples
are not packed, a significant number of samples present at least one packer signature.
The PIMP installer may be considered as a packer. Its use is associated to trojanized
applications installations. In addition, standalone malware samples are distributed by
using non-installer packers, such as UPX.

To overcome the challenge of analyzing obfuscated samples, we leveraged dy-
namic analysis procedures. Table 3 presents identified malicious behaviors and their as-

sociated use rate.

Table 3. Dynamic Analysis. Identified Malicious Behaviors.

Subsystem Operation Samples (%) Target Samples (%)
Create Files 91.56 Internet Explorer 10.14%
.DLL 86.80%
Read Files 89.18% Internet Explorer 7.01%
. .SYS 1.26%
File Subsystem EXE 16.20%
- .DLL 31.62%
Write Files 81.74% Internet Explorer <0.01%
Host 0.00%
Delete Files 62.45% Internet Explorer 0.00%
Process Subsvstem Create Process 22.84%
Y Delete Process 23.38%
. Proxy 68.36%
Set Registry Values 74.73% Autorun 566 %

Registry Subsystem

Delete Registry Values 55.43%

We observe that the samples in our dataset present high level of system interac-
tion, as most samples interact with more than one distinct OS subsystem. Whereas some
observed behaviors are generic, such as reading and writing on temporary files, others are
clearly suspicious. For instance, reading DLL files may be considered as legitimate, as
process need to load them in their program space. Reading . sys files, in turn, may be
associated to rootkit loading. Moreover, whereas reading a DLL may be considered legit-
imate, writing to them is considered malicious, as it is related to native system libraries
replacement. In addition to DLLs, other binary files were also written. Such combination
derives from the execution of downloader samples [Rossow et al. 2013].

Despite presenting this downloader characteristic, few processes were created.



Furthermore, few other expected malicious behaviors were not prevalent, such as writing
the host file. Itis explained by attackers moving their redirection strategy to OS proxies,
as observed in the prevalent written registry keys.

As for static analysis results, the identified behaviors should also be considered
as lower bounds, as dynamic analysis may also be evaded. We identified 80% of sam-
ples may implement some kind of anti-debug technique. Table 4 presents the identified
techniques and their distribution among all identified tricks.

Table 4. Identified Anti-Debugger

Techniques. Table 5. Identified Anti-VM tech-
Technique Occurrence (%) niques.
Getlasterror 95.41% Technique Occurrence(%)
Unhandledexceptionfilter 57.76% VMcheck.dll 93.55%
Raiseexception 47.77% Bochs & QEMU cpuid 14.59%
Terminateprocess 43.99% VM 3.63%
Isprocessorfeaturepresent 35.24% . v&iaBre '2 (70
Isdebuggerpresent 31.14% Vllrtua ox 3.29%
Findwindowex 30.90% VirtualPC 0.03%
Outputdebugstring 23.48%

Furthermore, 18% of samples present some kind of anti-virtualization technique.
Table 5 presents the identified anti-VM techniques and their distribution among all tech-
niques,

Regarding their network behavior, 60.69% of samples contacted at least 1 IP ad-
dress, indicating most samples rely on Internet to achieve their malicious goals. On aver-
age, each sample contacts 2 distinct IP addresses.

Figure 3 shows the protocol distribution for all samples. We observe that most
traffic is carried in TCP protocols, mainly due to HTTP connections. Similarly, DNS
traffic dominates UDP traffic.
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Table 6 presents the most contacted domains. We notice that cloud providers are
among the most accessed domains, which indicates an attackers trend of moving their
operations to these environments.



The number of host providers also affects the list of accessed top-level domains,
presented in Figure 4. The generic ones (. net and . com) are the most prevalent whereas
the country-related ones are more well distributed, indicating malware creators are ready
to exploit vulnerabilities in multiple countries.
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Regarding the DNS queries, most samples query the default server (google), as
presented in Figure 5. This is an import project decision as relying on the system stan-
dard server makes samples more easily subject to subversion, making analysis procedures
easier.

4.2. Fine-Grained Analysis

In this section, we consider the same aforementioned analysis outputs to perform a fine-
grained evaluation. Our goal is to explain the observed behavior and trends in addition to
pinpointing them.

To better understand how coarse and fine-grained analysis differ, consider the
identified results for the registry subsystem. The coarse-grained analysis identified ~5%
of samples write on Aut oRun keys. However, such kind of analysis does not specify
where such keys are located. We present, in Table 7, distinct written key paths.

Table 7. Modified AutoRun Keys. Some keys are more affected than others.
Key Samples(%)
HKCU\ID\Software\Microsoft\Windows\CurrentVersion\Run 46.33%
HKCU\.DEFAULT\SOFTWARE\Microsoft\Windows\CurrentVersion\Run <0.01%

The identified paths reflect distinct project decisions. Whereas majority of sam-
ples writes affect the current user (ID), thus having local impact, a single identified sample
writes on the . default key. By doing so, it schedules its binary to be executed in the
local context, affecting, for instance, the logon procedure [Microsoft 2007].

The presented distinction between the two analysis methods regarding the registry
subsystem extends for the remaining data. Coarse-grained analysis identified each sample
contacts 2 distinct IP addresses, on average. However, individual samples present char-
acteristics which may significantly differ from the average. This is true even for samples



which are supposed to implement the same malicious behavior. Table 8 shows the number
of distinct IPs contacted by 3 distinct families ransomware samples.

Table 8. Contacted IPs by Sample. Ransomware may be implemented in distinct

ways.
MDS5 Hash Number of Distinct IPs Label
clabb496deb7bd51a4ad2f8a43113b13 16386 Ransomware.Cerber
bc88096e7cc09f02f11deec35f84d5cd 16385 Ransomware. AWA
a801cdef09a61d3ba7969015a8bffecO 1 Ransomware. VirLock

We notice that although all samples are ransomware, their strategies are very dis-
tinct. The two first samples propagate by scanning the network, thus the high number of
contacted IPs. The last one presents a distinct spreading mechanism, contacting only its
C&C for infection notification.

Similarly, coarse-grained analysis states HTTP traffic dominates TCP payloads.
Fine-grained analysis, however, may specify which payload is carried by such traffics.
Table 9 shows the number of distinct HTTP requests performed by the most network-
intensive samples.

Table 9. Prevalent HTTP Requests. Downloaders perform many distinct connec-

tions.

MDS5 Hash Total of Distinct HTTP Request Label
ede13f40a96a8b6e5de1029200c0b15e 394 Downloader
e5f4116d08c343623d5ee3af5553cbee 353 Downloader
47a328b0b903bb68147facc3a084172¢ 310 Downloader

28c4e2a48d9ddfffa01a943calbal262 304 Downloader

We notice that these samples perform many HTTP requests, which is explained
by their downloaders nature, which makes them to contact multiple servers to retrieve
their multiple payloads. This result shows that combining both approaches allows not
only identifying the average use of network resources but also the behavior of specific
malware families within the dataset. Particular malware families may be also identified
through fine-grained analysis of their DNS traffic, as shown in Table 10.

Table 10. The percentage a query was sent to a DNS resolver by a sample and
the description of the resolver

Query Contacted(%) Description
bmp.pilenga.co.uk. 12.29% Hijacked Subdomain — Andromeda Botnet
tgr.tecnoagenzia.eu. 5.96% Hijacked Subdomain — Andromeda Botnet

tds.repack.it. 2.48% Andromeda Botnet
rxxl.tecnoagenzia.eu. 2.06% Andromeda Botnet
and31.blllaaaaaazblaaal.com. 0.92% Andromeda Botnet

We discovered the most prevalent resolved domains are associated to a large bot-
net named Andromeda [Avast 2016]. Botnets rely on frequent C&C communication to
receive commands from their botmasters.



5. Discussion

In this work, we presented analysis results of a large scale malware dataset to com-
pare coarse-grained and fine-grained approaches. While adopting coarse-grained analysis
methods, we were able to draw a broad panorama about the collected samples: Our eval-
uated dataset is mainly composed by executables—with few libraries—, which rely on
system native libraries—with few external ones—, graphical user interfaces and present
strong system interactions (file and registry creation/deletion).

Drawing panoramas allows us to compare multiple scenarios to understand their
differences. For instance, we can compare our worldwide-collected samples to the ones
found in the Brazilian scenario [Botacin et al. 2015]. In such, samples are presented as a
mix of binaries and DLL, also relying on system native functions, but with background
activity and fewer system interactions. Such characteristics are tied to Brazilian cultural
characteristics not present in our global dataset.

Despite allowing drawing panoramas, coarse-grained analysis is not able
to explain many samples project decisions. For instance, coarse-grained anal-
ysis of network results identifies each sample contacts, in average, 2 distinct
IP addresses.  Fine-grained analysis, in turn, is able to identify that a given
sample (clabb496deb7bd51a4ad2f8a43113b13) contacts 16386 IPs whereas other
(a801cdef09a61d3ba7969015a8bffecO) accesses only a single one and to explain such
distinction is due to samples distinct goals: The first sample is a ransomware which prop-
agates by scanning the network, thus contacting many IPs. The second sample, in turn,
despite also being a ransomware, presents a distinct spreading mechanism, thus contact-
ing only its own C&C.

The previously presented cases illustrate that only a combined analysis approach
allows us to achieve complete threat knowledge. In addition, we highlight that such fact is
empowered by a large scale dataset, which exacerbates analysis distinctions. By relying
on many samples, we were able to identify registry keys written only by one sample on a
universe of more than 100 thousand samples.

6. Conclusion

In this work, we presented analysis results of a large scale malware dataset. We compared
the results of two approaches—coarse and fine grained—, highlighting their differences.
We discovered that whereas coarse-grained analysis allows us to draw threat panoramas,
only fine-grained analysis enables us to understand samples internals. Therefore, only a
combined approach allows complete security analysis treatment.
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