
J Cryptogr Eng (2011) 1:187–199
DOI 10.1007/s13389-011-0017-8

REGULAR PAPER

Speeding scalar multiplication over binary elliptic curves
using the new carry-less multiplication instruction

Jonathan Taverne · Armando Faz-Hernández ·
Diego F. Aranha · Francisco Rodríguez-Henríquez ·
Darrel Hankerson · Julio López

Received: 2 September 2011 / Accepted: 8 September 2011 / Published online: 25 September 2011
© Springer-Verlag 2011

Abstract The availability of a new carry-less multiplication
instruction in the latest Intel desktop processors significantly
accelerates multiplication in binary fields and hence presents
the opportunity for reevaluating algorithms for binary field
arithmetic and scalar multiplication over elliptic curves. We
describe how to best employ this instruction in field mul-
tiplication and the effect on performance of doubling and
halving operations. Alternate strategies for implementing
inversion and half-trace are examined to restore most of
their competitiveness relative to the new multiplier. These
improvements in field arithmetic are complemented by a
study on serial and parallel approaches for Koblitz and ran-
dom curves, where parallelization strategies are implemented

J. Taverne: This work was performed while the author was visiting
CINVESTAV-IPN. D. F. Aranha: A portion of this work was
performed while the author was visiting University of Waterloo.

J. Taverne
Université de Lyon, Université Lyon 1, ISFA, Lyon, France
e-mail: jonathan.taverne@etu.univ-lyon1.fr

A. Faz-Hernández · F. Rodríguez-Henríquez (B)
Computer Science Department, CINVESTAV-IPN,
Mexico City, Mexico
e-mail: francisco@cs.cinvestav.mx

A. Faz-Hernández
e-mail: armfaz@computacion.cs.cinvestav.mx

D. F. Aranha · J. López
Institute of Computing, University of Campinas,
Campinas, Brazil
e-mail: dfaranha@ic.unicamp.br

J. López
e-mail: jlopez@ic.unicamp.br

D. Hankerson
Auburn University, Auburn, USA
e-mail: hankedr@auburn.edu

and compared. The contributions are illustrated with experi-
mental results improving the state-of-the-art performance of
halving and doubling-based scalar multiplication on NIST
curves at the 112- and 192-bit security levels and a new speed
record for side-channel-resistant scalar multiplication in a
random curve at the 128-bit security level. The algorithms
presented in this work were implemented on Westmere and
Sandy Bridge processors, the latest generation Intel microar-
chitectures.

Keywords Elliptic curve cryptography · Finite field
arithmetic · Parallel algorithm · Efficient software
implementation

1 Introduction

Improvements in the fabrication process of microprocessors
allow the resulting higher transistor density to be converted
into architectural features such as inclusion of new instruc-
tions or faster execution of the current instruction set. Limits
on the conventional ways of increasing a processor’s per-
formance such as incrementing the clock rate, scaling the
memory hierarchy [44] or improving support for instruction-
level parallelism [43] have pushed manufacturers to embrace
parallel processing as the mainstream computing paradigm
and consequently amplify support for resources such as mul-
tiprocessing and vectorization. Examples of the latter are the
recent inclusions of the SSE4 [23], AES [19] and AVX [14]
instruction sets in the latest Intel microarchitectures.

Since the dawn of elliptic curve cryptography in 1985,
several field arithmetic assumptions have been made by
researchers and designers regarding its efficient implemen-
tation in software platforms. Some analysis (supported by
experiments) assumed that inversion to multiplication ratios

123

188 J Cryptogr Eng (2011) 1:187–199

(I/M) were sufficiently small (e.g., I/M ≈ 3) that point
operations would be done in affine coordinates, favoring cer-
tain techniques. However, the small ratios were a mix of
old hardware designs, slower multiplication algorithms com-
pared with [36] and composite extension degree. It seems
clear that sufficient progress was made in multiplication so
there is incentive to use projective coordinates. Our inter-
est in the face of a much faster multiplication is at the other
end—is I/M large enough to affect methods that commonly
assumed this ratio is modest?

On the other hand, authors in [16] considered that the cost
of a point halving computation was roughly equivalent to 2
field multiplications. The expensive computations in halving
are a field multiplication, solving a quadratic z2+ z = c, and
finding a square root over F2m . However, quadratic solvers
presented in [21] are multiplication-free and hence, provided
that a fast binary field multiplier is available, there would be
concern that the ratio of point halving to multiplication may
be much larger than 2. Having a particularly fast multiplier
would also push for computing square roots in F2m as effi-
ciently as possible. Similarly, the common software design
assumption that field squaring is essentially free (relative to
multiplication) may no longer be valid.

A prevalent assumption is that large-characteristic fields
are faster than binary field counterparts for software imple-
mentations of elliptic curve cryptography.1 In spite of sim-
pler arithmetic, binary field realizations could not be faster
than large-characteristic analogs mostly due to the absence
of a native carry-less multiplier in contemporary high-
performance processors. However, using a bit-slicing tech-
nique, Bernstein [6] was able to compute a batch of 251-bit
scalar multiplications on a binary Edwards curve, employ-
ing 314,323 clock cycles per scalar multiplication, which,
before the results presented in this work and to the best of
our knowledge, was the fastest reported time for a software
implementation of binary elliptic point multiplication.

In this work, the impact of the recently introduced carry-
less multiplication instruction [20] in the performance of
binary field arithmetic and scalar multiplication over elliptic
curves is evaluated. We also consider parallel strategies in
order to speed scalar multiplication when working on multi-
core architectures. In contrast to parallelization applied to a
batch of operations, the approach considered here applies to
a single point multiplication. These approaches target dif-
ferent environments: batching makes sense when throughput
is the measurement of interest, while the lower level parall-
elization is of interest when latency matters and the device
is perhaps weak but has multiple processing units. Further-
more, throughout this paper it will be assumed that all the

1 In hardware realizations, the opposite thesis is widely accepted: ellip-
tic curve scalar point multiplication can be computed (much) faster
using binary extension fields.

computations are done in the unknown point scenario, i.e.,
where the elliptic curve point to be processed is not known
in advance, thus precluding off-line precomputation. We will
assume that there is sufficient memory space for storing
a few multiples of the point to be processed and look-up
tables for accelerating the computation of the underlying field
arithmetic.

As the experimental results will show, our implementa-
tion of multiplication via this native support was significantly
faster than previous timings reported in the literature. This
motivated a study on alternative implementations of binary
field arithmetic in hope of restoring the performance ratios
among different operations in which the literature is tradi-
tionally based [21]. A direct consequence of this study is that
performance analysis based on these conventional ratios [5]
will remain valid in the new platform. Our main contributions
are

– A strategy to efficiently employ the native carry-less mul-
tiplier in binary field multiplication.

– Branchless and/or vectorized approaches for implement-
ing half-trace computation, integer recoding and inver-
sion. These approaches allow the halving operation to
become again competitive with doubling in the face of
a significantly faster multiplier and help to reduce the
impact of integer recoding and inversion in the overall
speed of scalar multiplication, even when projective coor-
dinates are used.

– Parallelization strategies for dual-core execution of scalar
multiplication algorithms in random and Koblitz binary
elliptic curves.

We obtain a new state-of-the-art implementation of arithme-
tic in binary elliptic curves, including improved performance
for NIST-standardized Koblitz curves and random curves
suitable for halving and a new speed record for side-channel
resistant point multiplication in a random curve at the 128-bit
security level.

This paper reports a software library that performs scalar
multiplication over the NIST Koblitz and random binary
curves K-233, B-233, K-409 and B-409 in 89, 182, 321
and 705 thousand cycles, respectively, on a single core of
a 3.326 GHz Intel Westmere Core i5 660 processor. Our
library was also adjusted to compute scalar multiplication
in a 251-bit binary Edwards curve in 282 thousand clock
cycles. Moreover, we also introduce parallel strategies that
accelerate scalar multiplication by using both cores present in
the processor. In this setting, scalar multiplication on K-233,
B-233, K-409 and B-409 curves is computed in 58, 116, 191
and 444 thousand cycles, respectively. These dual-core tim-
ings imply, for example, that scalar multiplication on K-233
can be computed in less than 17.5 µs.

123

J Cryptogr Eng (2011) 1:187–199 189

Experimental results of the implementation of our library
on a 3.4 GHz Intel Sandy Bridge Core i7 2600K processor
are also provided. Taking advantage of the 256-bit regis-
ters with new addressing mode capabilities of this processor,
timings for NIST Koblitz and random binary curves K-233,
B-233, K-409 and B-409 are reported at a cost of 68, 157, 256
and 557 thousand cycles, respectively. Scalar multiplication
in a 251-bit binary Edwards curve can be computed in just
225 thousand clock cycles. Finally, using a parallel approach
scalar multiplication on K-233, B-233, K-409 and B-409 is
performed at a cost of 47, 100, 149 and 349 thousand cycles,
respectively, using two cores of the Sandy Bridge processor.2

The remainder of the paper progresses as follows:
Section 2 elaborates on exploiting carry-less multiplication
for high-performance field multiplication along with imple-
mentation strategies for half-trace and inversion. Sections 3
and 4 discuss serial and parallel approaches for scalar multi-
plication. Section 5 presents extensive experimental results
and comparison with related work. Section 6 concludes the
paper with perspectives on the interplay between the pro-
posed implementation strategies and future enhancements in
the architecture under consideration.

2 Binary field arithmetic

A binary extension field F2m can be constructed by means
of a degree-m polynomial f irreducible over F2 as F2m ∼=
F2[z]/ (f (z)). In the case of software implementations in
modern desktop platforms, field elements a ∈ F2m can be
represented as polynomials of degree at most m − 1 with
binary coefficients ai packed in n64 = � m

64� 64-bit proces-
sor words. In this context, the recently introduced carry-less
multiplication instruction can play a significant role in order
to efficiently implement a multiplier in F2m . Along with field
multiplication, other relevant field arithmetic operations such
as squaring, square root and half-trace will be discussed in
the rest of this section.

2.1 Multiplication

Field multiplication is the performance-critical operation for
implementing several cryptographic primitives relying on
binary fields, including arithmetic over elliptic curves and
the Galois Counter Mode of operation (GCM). For acceler-
ating the latter when used in combination with the AES block
cipher [19], Intel introduced the carry-less multiplier in the
Westmere microarchitecture as an instruction operating on
64-bit words stored in 128-bit vector registers with opcode
pclmulqdq [20]. The instruction latency currently peaks at

2 Preliminary results reported here have been published in [42]; this
paper is an enhanced and extended version.

15 cycles while reciprocal throughput ranks at 10 cycles. In
other words, when operands are not in a dependency chain,
effective latency is 10 cycles [15].

The instruction certainly looks expensive when compared
with the 3-cycle 64-bit integer multiplier present in the same
platform, which raises speculation whether Intel aimed for an
area/performance trade-off or simply balanced the latency to
the point where the carry-less multiplier did not interfere with
the throughput of the hardware AES implementation. Either
way, the instruction features suggest the following empirical
guidelines for organizing the field multiplication code: (i) as
memory access by vector instructions continues to be expen-
sive [6], the maximum amount of work should be done in reg-
isters, for example, through a Comba organization [12]; (ii)
as the number of registers employed in multiplication should
be minimized for avoiding false dependencies and maximize
throughput, the multiplier should have 128-bit granularity;
(iii) as the instruction latency allows, each 128-bit multipli-
cation should be implemented with three carry-less multipli-
cations in a Karatsuba fashion [28].

In fact, the overhead of Karatsuba multiplication is min-
imal in binary fields and the Karatsuba formula with the
smaller number of multiplications for multiplying � n64

2 � 128-
bit digits proved to be optimal in all the considered field sizes.
This observation comes in direct contrast to previous vector-
ized implementations of the comb method for binary field
multiplication due to López and Dahab [36, Algorithm 5],
where the memory-bound precomputation step severely lim-
its the number of Karatsuba steps which can be employed,
fixing the cutoff point to large fields [2] such as F21223 . To
summarize, multiplication was implemented as a 128-bit
granular Karatsuba multiplier with each 128-digit multipli-
cation solved by another Karatsuba instance requiring three
carry-less multiplications, cheap additions and efficient shifts
by multiples of 8 bits. A single 128-digit level of Karatsuba
was used for fields F2233 and F2251 where � n64

2 � = 2, while
two instances were used for field F2409 where � n64

2 � = 4.
Particular approaches which led to lower performance in
our experiments were organizations based on optimal Toom-
Cook [10] due to the higher overhead brought by minor
operations and on a lower 64-bit granularity combined with
alternative multiple-term Karatsuba formulas [38] due to reg-
ister exhaustion to store all the intermediate values, causing
a reduction in overall throughput.

2.2 Squaring, square-root and multi-squaring

Squaring and square-root are considered cheap operations in
a binary field, especially when F2m is defined by a square-
root friendly polynomial [1,3], because they require only
linear manipulation of individual coefficients [21]. These
operations are traditionally implemented with the help of

123

190 J Cryptogr Eng (2011) 1:187–199

large precomputed tables, but vectorized implementations
are possible with simultaneous table lookups through byte
shuffling instructions [2]. This approach is enough to keep
square and square-root efficient relative to multiplication
even with a dramatic acceleration of field multiplication.
For illustration, Aranha et al. [2] reports multiplication-to-
squaring ratios as high as 34 without a native multiplier, far
from the conventional ratios of 5 [5] or 7 [21] and with a
large room for future improvement.

Multi-squaring, or exponentiation to 2k, can be efficiently
implemented with a time-memory trade-off proposed as
m-squaring in [1,11] and here referred as multi-squar-
ing. For a fixed k, a table T of 16�m

4 � field elements
can be precomputed such that T [j, i0 + 2i1 + 4i2 +
8i3] = (i0z4 j + i1z4 j+1 + i2z4 j+2 + i3z4 j+3)2k

and a2k =
∑�m

4 �
j=0 T [j, �a/24 j� mod 24]. The threshold where multi-

squaring became faster than simple consecutive squaring
observed in our implementation was around k ≥ 6 for F2233

and k ≥ 10 for F2409 .

2.3 Inversion

Inversion modulo f (z) can be implemented via the polyno-
mial version of the Extended Euclidean Algorithm (EEA),
but the frequent branching and recurrent shifts by arbi-
trary amounts present a performance obstacle for vector-
ized implementations, which makes it difficult to write
consistently fast EEA codes across different platforms. A
branchless approach can be implemented through Itoh-Tsuji
inversion [24] by computing a−1 = a(2m−1−1)2, as pro-
posed in [18]. In contrast to the EEA method, the Itoh-Tsujii
approach has the additional merit of being similarly fast
(relative to multiplication) across common processors.

The overall cost of the method is m − 1 squarings and a
number of multiplications dictated by the length of an addi-
tion chain for m−1. The cost of squarings can be reduced by
computing each required 2i -power as a multi-squaring [11].
The choice of an addition chain allows the implementer to
control the amount of required multiplications and the pre-
computed storage for multi-squaring, since the number of
2i -powers involved can be balanced.

A previous work obtained inversion-to-multiplication
ratios between 22 and 41 by implementing EEA in 64-bit
mode [2], while the conventional ratios are between 5 and
10 [5,21]. While we cannot reach the small ratios with Itoh-
Tsujii for the parameters considered here, we can hope to do
better than applying the method from [2] which will give sig-
nificantly larger ratios with the carry-less multiplier. Hence,
the cost of squarings and multi-squarings should be mini-
mized to the lowest possible allowed by storage capacity.

To summarize, we use addition chains of 10, 10 and
11 steps for computing field inversion over the fields

F2233 , F2251 and F2409 , respectively.3 We extensively used
the multi-squaring approach described in the preceding sec-
tion. For example, in the case of F2233 , the addition chain
1→ 2→ 3→ 6→ 7→ 14→ 28→ 29→ 58→ 116→ 232
was selected and used 3 pre-computed tables for comput-
ing the iterated squarings a229

, a258
and a2116

. The rest of the
field squaring operations were computed by executing con-
secutive squarings. Let us recall that each table stores a total
of 16�m

4 � field elements.

2.4 Half-trace

Half-trace plays a central role in point halving and its per-
formance is essential if halving is to be competitive against
doubling. For an odd integer m, the half-trace function H :
F2m → F2m is defined by H(c) = ∑(m−1)/2

i=0 c22i
and satis-

fies the equation λ2+λ = c+Tr(c) required for point halv-
ing. One efficient desktop-targeted implementation of the
half-trace is described in [3] and presented as Algorithm 1,
making extensive use of precomputations. This implementa-
tion is based on two main steps: the elimination of even power
coefficients and the accumulation of half-trace precomputed
values.

Step 5 in Algorithm 1, as shown in [21], consists in reduc-
ing the number of non-zero coefficients of c by removing
the coefficients of even powers i by means of the identity
H(zi) = H(zi/2) + zi/2 + Tr(zi). That will lead to mem-
ory and time savings during the last step of the half-trace
computation, the accumulation part (step 6). This is done by
extraction of the odd and even bits and can benefit from vec-
torization in the same way as square-root in [2]. However,
in the case of half-trace there is a bottleneck caused by data
dependencies. For efficiency, the bank of 128-bit registers is
used as much as possible, but at one point in the algorithm
execution the number of available bits to process decreases.
For 64-bit and 32-bit digits, the use of 128-bit registers is still
beneficial, but for a smaller size, the conventional approach
(not vectorized) becomes again competitive.

Unlike the direction taken in [21], the approach in [3] does
not attempt to minimize memory requirements but rather it
greedily strives to speed the accumulation part (step 6). Pre-
computation is extended so as to reduce the number of acces-
ses to the lookup table. The following values of the half-trace
are stored: H(l0c8i+1 + l1c8i+3 + l2c8i+5 + l3c8i+7) for all
i ≥ 0 such that 8i < m − 3 and l j ∈ F2. The memory size
in bytes taken by the precomputations follows the formula
16× n64 × 8× �m

8 �.

3 In the case of inversion over F2409 , the minimal length addition chain
to reach m − 1 = 408 has 10 steps. However, an 11-step chain was
preferred in order to save one look-up table.

123

J Cryptogr Eng (2011) 1:187–199 191

Algorithm 1 Solve x2 + x = c

Input: c =∑m−1
i=0 ci zi ∈ F2m where m is odd and Tr(c) = 0

Output: a solution s of x2 + x = c
1: compute H(l0c8i+1 + l1c8i+3 + l2c8i+5 + l3c8i+7) for i ∈ I =
{0, . . . , �m−3

8 �} and l j ∈ F2
2: s ← 0
3: for i = (m − 1)/2 downto 1 do
4: if c2i = 1 then
5: c← c + zi , s ← s + zi

6: return s ← s + ∑
i∈I c8i+1 H(z8i+1) + c8i+3 H(z8i+3) +

c8i+5 H(z8i+5)+ c8i+7 H(z8i+7)

While considering different organizations of the half-
trace code, we made the following serendipitous observation:
inserting as many xor operations as the data dependencies
permitted from the accumulation stage (step 6) into step 5
gave a substantial speed-up of 20% to 25% compared with
code written in the order as described in Algorithm 1. Plau-
sible explanations are compiler optimization and proces-
sor pipelining characteristics. The result is a half-trace-to-
multiplication ratio near 1, and this ratio can be reduced if
memory can be consumed more aggressively.

3 Random binary elliptic curves

Given a finite field Fq for q = 2m, a non-supersingular ellip-
tic curve E(Fq) is defined to be the set of points (x, y) ∈
Fq × Fq that satisfy the affine equation

y2 + xy = x3 + ax2 + b, (1)

where a and 0 �= b ∈ Fq , together with the point at infin-
ity denoted by O. It is known that E(Fq) forms an additive
Abelian group with respect to the elliptic point addition oper-
ation.

Let k be a positive integer and P a point on an elliptic
curve. Then elliptic curve scalar multiplication is the oper-
ation that computes the multiple Q = k P, defined as the
point resulting of adding P to itself k − 1 times. One of the
most basic methods for computing a scalar multiplication is
based on a double-and-add variant of Horner’s rule. As the
name suggests, the two most prominent building blocks of
this method are the point doubling and point addition primi-
tives. By using the non-adjacent form (NAF) representation

of the scalar k, the addition-subtraction method computes
a scalar multiplication in about m doubles and m/3 addi-
tions [21]. The method can be extended to a width-ω NAF
k =∑t−1

i=0 ki 2i where ki ∈ {0,±1, . . . ,±2m−1}, kt−1 �= 0,

and at most one of any ω consecutive digits is nonzero. The
length t is at most one larger than the bitsize of k, and the den-
sity is approximately 1/(ω + 1); for ω = 2, this is the same
as NAF.

3.1 Sequential algorithms for random binary curves

The traditional left-to-right double-and-add method is illus-
trated in Algorithm 2, and the width-ω NAF k =∑t−1

i=0 ki 2i

expression is computed from left to right, i.e., it starts pro-
cessing kt−1 first, then kt−2 until it ends with the coefficient
k0. Step 1 computes 2ω−2−1 multiples of the point P . Based
on the Montgomery trick, authors in [13] suggested a method
to precompute the affine points in large-characteristic fields
Fp, employing only one inversion. Exporting that approach
to F2m , we obtained formulae that offer a saving of 4 multi-
plications and 15 squarings for ω = 4 when compared with a
naive method that would make use of the Montgomery trick
in a trivial way (see Table 1 for a summary of the computa-
tional effort associated with this phase).

Algorithm 2 Double-and-add scalar multiplication
Input: ω, k, P ∈ E(F2m) of odd order r
Output: k P
1: Obtain the representation ωNAF(k) =∑t

i=0 ki 2i

2: Compute Pi = i P for i ∈ I = {1, 3, . . . , 2ω−1 − 1}
3: Q ← O
4: for i = t downto 0 do
5: Q ← 2Q
6: if ki > 0 then
7: Q ← Q + Pki

8: else if ki < 0 then
9: Q ← Q − P−ki

10: return Q

For a given ω, the evaluation stage of the algorithm has
approximately m/(ω+1) point additions and hence increas-
ing ω has diminishing returns. For the curves given by NIST
[39] and with on-line precomputation, ω ≤ 6 is optimal in
the sense that total point additions are minimized. In many
cases, the recoding in ωNAF(k) is performed on-line and can
be considered as part of the precomputation step.

Table 1 Costs and parameter
recommendations for
ω ∈ {3, 4, 5}

(a) (b)

123

192 J Cryptogr Eng (2011) 1:187–199

Table 2 Timings in clock cycles for field arithmetic operations on a Westmere processor

Base field operation F2233 F2251 F2409

GCC ICC op/M GCC ICC op/M GCC ICC op/M

Multiplication 128 128 1.00 161 159 1.00 345 348 1.00

López–Dahab Mult. 256 367 2.87 338 429 2.70 637 761 2.19

Square root 67 60 0.47 155 144 0.91 59 56 0.16

Squaring 30 35 0.27 56 59 0.37 44 49 0.14

Half trace 167 150 1.17 219 212 1.33 322 320 0.92

Multi-Squaring 191 184 1.44 195 209 1.31 460 475 1.36

Inversion 2,951 2,914 22.77 3,710 3,878 24.39 9,241 9,350 26.87

4-τNAF 9,074 11,249 87.88 − − − 23,783 26,633 76.53

3-NAF 5,088 5,059 39.52 − − − 13,329 14,373 41.30

4-NAF 4,280 4,198 32.80 − − − 11,406 12,128 34.85

Recoding (halving) 1,543 1,509 11.79 − − − 3,382 3,087 8.87

Recoding (parallel) 999 1,043 8.15 − − − 2,272 2,188 6.29

op/M denotes ratio to multiplication obtained from ICC

Table 3 Timings in clock cycles
for curve arithmetic operations
on a Westmere processor

op/M denotes ratio to
multiplication obtained from
ICC

Elliptic curve operations B-233 B-409

GCC ICC op/M GCC ICC op/M

Doubling (LD) 690 710 5.55 1,641 1,655 4.76

Addition (KIM Mixed) 1,194 1,171 9.15 2,987 3,000 8.62

Addition (LD Mixed) 1,243 1,233 9.63 3,072 3,079 8.85

Addition (LD General) 1,954 1,961 15.32 4,893 4,922 14.14

Halving 439 417 3.26 894 878 2.52

The most popular way to represent points in binary curves
is López–Dahab projective coordinates that yield an effective
cost for a mixed point addition and point doubling operation
of about 8M + 5S ≈ 9M and 4M + 5S ≈ 5M,

respectively (see Tables 2 and 3). Kim and Kim [29] report
alternate formulas for point doubling requiring four multipli-
cations and five squarings, but two of the four multiplications
are by the constant b, and these have the same cost as gen-
eral multiplication with the native carry-less multiplier. For
mixed addition, Kim and Kim require eight multiplications
but save two field reductions when compared with López–
Dahab, giving their method the edge. Hence, in this work
López–Dahab was adopted for point doubling and Kim and
Kim for point addition.

Right-to-left halve-and-add

Scalar multiplication based on point halving replaces point
doubling by a potentially faster halving operation that pro-
duces Q from P with P = 2Q. The method was pro-
posed independently by Knudsen [31] and Schroeppel [40]

for curves y2+ xy = x3+ ax2+ b over F2m . The method is
simpler if the trace of a is 1, and this is the only case consid-
ered here. The expensive computations in halving are a field
multiplication, solving a quadratic z2+ z = c, and finding a
square root. On the NIST random curves studied in this work,
we found that the cost of halving is approximately 3M, where
M denotes the cost of a field multiplication. In [16] authors
proposed Algorithm 3, a right-to-left halve-and-add method
that allows efficient windowing computation and that is espe-
cially suitable in the case of large I/M ratios.

Let the base point P have odd order r, and let t be the num-
ber of bits to represent r . For 0 < n ≤ t, let

∑t
i=0 k′i 2i be

given by the width-ω NAF of 2nk mod r . Then k ≡ k′/2n ≡
∑t

i=0 k′i 2i−n (mod r) and the scalar multiplication can be
split as

k P = (k′t 2t−n + · · · + k′n)P + (k′n−12−1 + · · · + k′02−n)P.

(2)

When n = t, this gives the usual representation for point
multiplication via halving, illustrated in Algorithm 4 (that is,

123

J Cryptogr Eng (2011) 1:187–199 193

Algorithm 3 Halve-and-add scalar multiplication
Input: ω, k, P ∈ E(F2m) of odd order r
Output: k P
1: Perform scalar recoding: k′ = 2t k mod r where t = �log2 r�
2: Obtain the representation ωNAF(k′)/2t =∑t

i=0 k′i 2i−t

3: Initialize Qi ← O for i ∈ I = {1, 3, . . . , 2ω−1 − 1}
4: for i = t downto 0 do
5: if k′i > 0 then
6: Qk′i ← Qk′i + P

7: else if k′i < 0 then
8: Q−k′i ← Q−k′i − P
9: P ← P/2
10: return Q ←∑

i∈I i Qi

the computation is essentially the right column). The cost for
postcomputation appears in Table 1.

3.2 Parallel scalar multiplication on random binary curves

For parallelization, choose n < t in (2) and process the
first portion by a double-and-add method and the second
portion by a method based on halve-and-add. Algorithm 4
illustrates a parallel approach suitable for two processors.
Recommended values for n to balance cost between proces-
sors appear in Table 1.

Algorithm 4 Double-and-add, halve-and-add scalar multi-
plication: parallel
Input: ω, scalar k, P ∈ E(F2m) of odd order r, constant n (e.g., from

Table 1(b))
Output: k P
1: Compute Pi = i P for

i ∈ I = {1, 3, . . . , 2ω−1 − 1}
2: Q0 ← O

3: Recode: k′ = 2nk mod r and
obtain rep ωNAF(k′)/2n =∑t

i=0 k′i 2i−n

4: Initialize Qi ← O for i ∈ I
{Barrier}

5: for i = t downto n do
6: Q0 ← 2Q0
7: if k′i > 0 then
8: Q0 ← Q0 + Pk′i
9: else if k′i < 0 then
10: Q0 ← Q0 − P−k′i

11: for i = n − 1 downto 0 do
12: P ← P/2
13: if k′i > 0 then
14: Qk′i ← Qk′i + P

15: else if k′i < 0 then
16: Q−k′i ← Q−k′i − P

{Barrier}

17: return Q ← Q0 +∑
i∈I i Qi

3.3 Side-channel-resistant multiplication on random
binary curves

Another approach for scalar multiplication offering some
resistance to side-channel attacks was proposed by López
and Dahab [35] based on the Montgomery laddering tech-
nique. This approach requires 6M + 5S in F2m per itera-
tion independently of the bit pattern in the scalar, and one
of these multiplications is by the curve coefficient b. The
curve being lately used for benchmarking purposes [7] at the
128-bit security level is an Edwards curve (CURVE2251)
corresponding to the Weierstraß curve (1) with a = 0 and

b = z13+z9+z8+z7+z2+z+1 over F2[z]/(z251+z7+z4 +
z2+1). It is clear that this curve is especially tailored for this
method due to the short length of b, reducing the cost of
the algorithm to approximately 5.25M + 5S per iteration.
At the same time, halving-based approaches are non-opti-
mal for this curve due to the penalties introduced by the
4-cofactor [30]. Considering this and to partially satisfy the
side-channel resistance offered by a bitsliced implementation
such as [6], we restricted the choices of scalar multiplication
at this security level to the Montgomery laddering approach.

4 Koblitz elliptic curves

A Koblitz curve Ea(Fq), also known as an Anomalous
Binary Curve [32], is a special case of (1) where b = 1 and
a ∈ {0, 1}. In a binary field, the map taking x to x2 is an auto-
morphism known as the Frobenius map. Since Koblitz curves
are defined over the binary field F2, the Frobenius map and
its inverse naturally extend to automorphisms of the curve
denoted τ and τ−1, respectively, where τ(x, y) = (x2, y2).
Moreover, (x4, y4)+2(x, y) = μ(x2, y2) for every (x, y) on
Ea, where μ = (−1)1−a ; that is, τ satisfies τ 2+2 = μτ and

we can associate τ with the complex number τ = μ+√−7
2 .

Solinas [41] presents a τ -adic analogue of the usual NAF
as follows. Since short representations are desirable, an ele-
ment ρ ∈ Z[τ] is found with ρ ≡ k (mod δ) of as small
norm as possible, where δ = (τm − 1)/(τ − 1). Then for
the subgroup of interest, k P = ρ P and a width-ω τ -adic
NAF (ωτNAF) for ρ is obtained in a fashion that paral-
lels the usual ωNAF. As in [41], define αi = i mod τω

for i ∈ {1, 3, . . . , 2ω−1 − 1}. A ωτNAF of a nonzero
element ρ is an expression ρ = ∑l−1

i=0 uiτ
i where each

ui ∈ {0,±α1,±α3, . . . ,±α2ω−1−1}, ul−1 �= 0, and at most
one of any consecutive ω coefficients is nonzero. Scalar mul-
tiplication k P can be performed with the ωτNAF expansion
of ρ as

ul−1τ
l−1 P + · · · + u2τ

2 P + u1τ P + u0 P (3)

with l − 1 applications of τ and approximately l/(ω + 1)

additions.
The length of the representation is at most m + a, and

Solinas presents an efficient technique to find an estimate
for ρ, denoted ρ′ = k partmod δ with ρ′ ≡ ρ (mod δ),

having expansion of length at most m + a+ 3 [9,41]. Under
reasonable assumptions, the algorithm will usually produce
an estimate giving length at most m + 1. For simplicity, we
will assume that the recodings obtained have this as an upper
bound on length; small adjustments are necessary to pro-
cess longer representations. Under these assumptions and
properties of τ, scalars may be written k = ∑m

i=0 uiτ
i =

∑m
i=0 uiτ

−(m−i) since τ−i = τm−i for all i .

123

194 J Cryptogr Eng (2011) 1:187–199

4.1 Sequential algorithms for Koblitz curves

Algorithm 5 is a traditional left-to-right τ -and-add method,
and expression (3) is computed from left to right, i.e., it starts
processing ul−1 first, then ul−2 until it ends with the coeffi-
cient u0. Step 1 computes 2ω−2−1 multiples of the point P,

each at a cost of approximately one point addition (see Table 1
for a summary of the computational effort associated to this
phase).

Algorithm 5 Left-to-right τ -and-add scalar multiplication
Input: ω, k ∈ [1, r − 1], P ∈ Ea(F2m) of order r
Output: k P
1: Compute Pu = αu P for u ∈ {1, 3, 5, . . . , 2ω−1 − 1} where αi =

i mod τω

2: Compute ρ = k partmod δ and ωτNAF(ρ) =∑l−1
i=0 ui τ

i ; Q ← O
3: for i = l − 1 downto 0 do
4: Q ← τ Q
5: if ui = α j then
6: Q ← Q + Pj
7: else if ui = −α j then
8: Q ← Q − Pj
9: return Q

Alternatively, we can process right-to-left as shown in
Algorithm 6. The multiple points of precomputation Pu

in Algorithm 5 are exchanged for the same number of
accumulators Qu along with postcomputation. The cost of
postcomputation is likely more than the precomputation of
Algorithm 5; see Table 1 for a summary in the case where
postcomputation is with projective additions. However, if the
accumulator in Algorithm 5 is in projective coordinates, then
Algorithm 6 has a less expensive evaluation phase since τ is
applied to points in affine.

Algorithm 6 Right-to-left τ -and-add scalar multiplication
Input: ω, k ∈ [1, r − 1], P ∈ Ea(F2m) of order r
Output: k P
1: ρ = k partmod δ, ωτNAF(ρ) = ∑l−1

i=0 ui τ
i Qu = O for u ∈ I =

{1, 3, . . . , 2ω−1 − 1}
2: for i = 0 to l − 1 do
3: if ui = α j then
4: Q j ← Q j + P
5: else if ui = −α j then
6: Q j ← Q j − P
7: P ← τ P
8: return Q ←∑

u∈I αu Qu

4.2 Parallel algorithm for Koblitz curves

The basic strategy in our parallel algorithm is to reformu-
late the scalar multiplication in terms of both the τ and
the τ−1 operators as k = ∑m

i=0 uiτ
i = u0 + u1τ

1 +
· · · + unτ n + un+1τ

−(m−n−1) + · · · + um = ∑n
i=0 uiτ

i +∑m
i=n+1 uiτ

−(m−i) where 0 < n < m. Algorithm 7
illustrates a parallel approach suitable for two processors.
Although similar in structure to Algorithm 4, a significant

difference is the shared precomputation rather than the pre
and postcomputation required in Algorithm 4.

The scalar representation is given by Solinas [41] and
hence has an expected m/(ω+1) point additions in the eval-
uation-stage and an extra point addition at the end. There are
also approximately m applications of τ or its inverse. If the
field representation is such that these operators have similar
cost or are sufficiently inexpensive relative to field multipli-
cation, then the evaluation stage can be a factor 2 faster than
a corresponding non-parallel algorithm.

Algorithm 7 ωτNAF scalar multiplication: parallel
Input: ω, k ∈ [1, r − 1], P ∈ Ea(F2m) of order r, constant n (e.g.,

from Table 1(b))
Output: k P
1: ρ ← k partmod δ

2:
∑l−1

i=0 ui τ
i ← ωτNAF(ρ)

3: Pu = αu P,

for u ∈ {1, 3, 5, . . . , 2ω−1 − 1}
{Barrier}

4: Q0 ← O
5: for i = n downto 0 do
6: Q0 ← τ Q0
7: if ui = α j then
8: Q0 ← Q0 + Pj
9: else if ui = −α j then
10: Q0 ← Q0 − Pj

11: Q1 ← O
12: for i = n + 1 to m do
13: Q1 ← τ−1 Q1
14: if ui = α j then
15: Q1 ← Q1 + Pj
16: else if ui = −α j then
17: Q1 ← Q1 − Pj

{Barrier}

18: return Q ← Q0 + Q1

As discussed earlier, unlike the ordinary width-ω NAF,
the τ -adic version requires a relatively expensive calculation
to find a short ρ with ρ ≡ k (mod δ). Hence, (a portion of)
the precomputation is “free” in the sense that it occurs during
scalar recoding. This can encourage the use of a larger win-
dow size ω. The essential features exploited by Algorithm 7
are that the scalar can be efficiently represented in terms of
the Frobenius map and that the map and its inverse can be effi-
ciently computed, and hence the algorithm adapts to curves
defined over small fields.

Algorithm 7 is attractive in the sense that two processors
are directly supported without “extra” computations. How-
ever, if multiple applications of the “doubling step” are suf-
ficiently inexpensive, then more processors and additional
curves can be accommodated in a straightforward fashion
without sacrificing the high-level parallelism of Algorithm 7.
As an example for Koblitz curves, a variant on Algorithm 7
discards the applications of τ−1 (which may be more expen-
sive than τ) and finds k P = k1(τ j P) + k0 P = τ j (k1 P) +
k0 P for suitable ki and j ≈ m/2 with traditional methods
to calculate ki P . The application of τ j is low cost if there is
storage for a per-field matrix as it was first discussed in [1].

5 Experimental results

We consider example fields F2m for m ∈ {233, 251, 409}.
These were chosen to address 112-bit and 192-bit security

123

J Cryptogr Eng (2011) 1:187–199 195

levels, according to the NIST recommendation, and the 251-
bit binary Edwards elliptic curve presented in [6]. The field
F2233 was also chosen as more likely to expose any over-
head penalty in the parallelization compared with larger fields
from NIST. Our C library coded all the algorithms using the
GNU C 4.6 (GCC) and Intel 12 (ICC) compilers, and the
timings were obtained on a 3.326 GHz 32nm Intel Westmere
Core i5 660 processor.

Obtaining times useful for comparison across similar sys-
tems can be problematic. Intel, for example, introduced
“Pentium 4” processors that were fundamentally different
than earlier designs with the same name. The common
method via time stamp counter (TSC) requires care on recent
processors having “turbo” modes that increase the clock (on
perhaps 1 of 2 cores) over the nominal clock implicit in TSC,
giving an underestimate of actual cycles consumed. Bench-
marking guidelines on eBACS [7], for example, recommend
disabling such modes, and this is the method followed in this
paper.

Timings for field arithmetic as measured in the i5 pro-
cessor are shown in Table 2. The López–Dahab multiplier
described in [2] was implemented as a baseline to quantify
the speedup due to the native multiplier. For the most part,
timings for GCC and ICC are similar, although López–Da-
hab multiplication is an exception. The difference in mul-
tiplication times between F2233 = F2[z]/(z233+z74+1) and
F2251 = F2[z]/(z251+z7+z4+z2+1) is in reduction. The rel-
atively expensive square root in F2251 is due to the represen-
tation chosen; if square roots are of interest, then there are
reduction polynomials giving faster square root and similar
numbers for other operations. Inversion via exponentiation
(Sect. 2) gives I/M similar to that in [2] where a Euclidean
algorithm variant was used with similar hardware but without
the carry-less multiplier.

Table 4 shows timings obtained for different variants of
sequential and parallel scalar multiplication over random
binary curves as measured in the i5 processors. We observe
that for ωNAF recoding with ω = 3, 4, the halve-and-add
algorithm is always faster than its double-and-add counter-
part. This performance is a direct consequence of the timings
reported in Table 3, where the cost of one point doubling is
roughly 5.6 and 4.8 multiplications, whereas the cost of a
point halving is of only 3.3 and 2.5 multiplications in the
fields F2233 and F2409 , respectively. The parallel version that
concurrently executes these algorithms in two threads com-
putes one scalar multiplication with a latency that is roughly
37% smaller than that of the halve-and-add algorithm for the
curves B-233 and B-409.

Table 5 shows timings obtained for different variants of
sequential and parallel scalar multiplication over Koblitz
curves as measured in the i5 processor. The bold entries for
Koblitz curves identify fastest timings per category (i.e., con-
sidering the compiler, curve and the specific value of ω used

Table 4 Timings in 103 clock cycles for random curve scalar multipli-
cation in the unknown-point scenario measured on a Westmere proces-
sor

ω Scalar mult random curves B-233 B-409

GCC ICC GCC ICC

Double-and-add 240 238 984 989

3 Halve-and-add 196 192 755 756

(Dbl, Halve)-and-add 122 118 465 466

Double-and-add 231 229 941 944

4 Halve-and-add 188 182 706 705

(Dbl, Halve)-and-add 122 116 444 445

Side-channel resistant CURVE2251

scalar multiplication GCC ICC

Montgomery laddering 296 282

Table 5 Timings in 103 clock cycles for Koblitz curve scalar multiplica-
tion in the unknown-point scenario measured on a Westmere processor

ω Scalar mult Koblitz curves K-233 K-409

GCC ICC GCC ICC

Alg. 5 111 110 413 416

3 Alg. 6 98 98 381 389

(τ, τ)-and-add 73 74 248 248

Alg. 7 80 78 253 248

Alg. 5 97 95 353 355

4 Alg. 6 90 89 332 339

(τ, τ)-and-add 68 65 216 214

Alg. 7 73 69 218 214

Alg. 5 92 90 326 328

5 Alg. 6 95 93 321 332

(τ, τ)-and-add 63 58 197 191

Alg. 7 68 63 197 194

in the ω NAF recoding). For smaller ω, Algorithm 6 has
an edge over Algorithm 5 because τ is applied to points in
affine coordinates; this advantage diminishes with increas-
ing ω due to postcomputation cost. “(τ, τ)-and-add” denotes
the parallel variant described in Sect. 4.2. There is a stor-
age penalty for a linear map, but applications of τ−1 are
eliminated (of interest when τ is significantly less expen-
sive). Given the modest cost of the multi-squaring operation
(with an equivalent cost of less than 1.44 field multiplica-
tions, see Table 2), the (τ, τ)-and-add parallel variant is usu-
ally faster than Algorithm 7. When using ω = 5, the parallel
(τ, τ)-and-add algorithm computes one scalar multiplication
with a latency that is roughly 35.6 and 40.5% smaller than
that of the best sequential algorithm for the curves K-233 and
K-409, respectively.

123

196 J Cryptogr Eng (2011) 1:187–199

Table 6 Comparison with
hardware accelerators for
elliptic curve scalar
multiplication

a Time and area costs of
ωτ NAF expansion were not
included
b Two-core Implementation
c Single-core Implementation

Curve Security Platform and area Calc. Throughput
(bits) time (µs) (Mbps)

Järvinen and Skyttä [26] K-163 80 Stratix II, 23346 ALMs 28.95 5.63

K-163 80 Stratix II, 13472 ALMs 20.28 8.04

Järvinen and Skyttä [27] K-163 80 Stratix II, 26148 ALMs 4.91 33.20

Lutz and Hasan [37] K-163 80 Virtex E, 10017 LUTs 75.00 2.17

Ahmadi et al.a [1] K-233 112 Virtex 2, 15916 Slices 7.22 32.27

This work K-233 112 Intel i5 660 @3.326GHzb,− 17.50 13.32

curve2251 128 Intel i5 660 @3.326GHzc,− 79.40 3.16

K-409 192 Intel i5 660 @3.326GHzb,− 57.37 7.13

Table 7 Timings in clock cycles
for field arithmetic operations
on a Sandy Bridge processor

op/M denotes ratio to
multiplication obtained from
ICC

Base field operation F2233 F2251 F2409

GCC ICC op/M GCC ICC op/M GCC ICC op/M

Multiplication 100 100 1.00 130 126 1.00 270 273 1.00

López–Dahab Mult. 210 320 3.20 276 398 3.16 491 660 2.42

Square root 63 56 0.56 127 131 1.04 52 49 0.18

Squaring 22 24 0.24 57 47 0.37 35 34 0.12

Half trace 142 129 1.29 156 148 1.17 254 242 0.88

Multi-Squaring 133 112 1.12 141 120 0.95 419 392 1.43

Inversion 2,215 2,110 21.10 3,202 3,058 24.27 7,256 7,858 28.78

3-τNAF 6,933 9,572 95.72 − − − 16,353 20,272 74.26

4-τNAF 6,550 9,266 92.66 − − − 15,722 19,758 72.37

5-τNAF 6,351 9,033 90.33 − − − 15,221 19,363 70.93

3-NAF 2,859 3,245 32.45 − − − 9,151 9,165 33.57

4-NAF 2,402 2,714 27.14 − − − 7,793 7,803 25.58

Recoding (halving) 1,454 1,465 14.65 − − − 2,765 2,954 10.82

Recoding (parallel) 951 1,011 10.11 − − − 1,839 1,987 7.28

Per-field storage and coding techniques compute half-
trace at cost comparable to field multiplication, and methods
based on halving continue to be fastest for suitable random
curves. However, the hardware multiplier and squaring (via
shuffling) give a factor 2 advantage to Koblitz curves in the
examples from NIST. This is larger than in [16,21], where
a 32-bit processor in the same general family as the i5 has
half-trace at approximately half the cost of a field multipli-
cation for B-233 and a factor 1.7 advantage to K-163 over
B-163 (and the factor would have been smaller for K-233 and
B-233). It is worth remarking that the parallel scalar multi-
plications versions shown in Tables 5 and 10 look best for
bigger curves and larger ω.

Somewhat surprisingly, our software implementations
outperform several hardware accelerators previously reported
in the open literature (see Table 6). In the case of relatively
low security levels, hardware implementations of elliptic
curve scalar multiplication remain faster. For example, the
computation of point multiplication on the NIST K-163 curve
performed on a Stratix II as reported in [27] is roughly 3.6

times faster than our two-core point multiplication imple-
mentation on NIST K-233. Depending on the application,
this speedup may justify the usage of larger FPGAs which
are now available in hybrid computers.

5.1 First look at Sandy Bridge implementation issues

In this section we present the performance achieved by our C
library when implemented on a 3.4 GHz 32 nm Intel Sandy
Bridge Core i7 2600K processor. Corresponding timings for
field and elliptic curve arithmetic and sequential and parallel
scalar multiplication over random binary curves and Koblitz
curves as measured in the Sandy Bridge processor are shown
in Tables 7, 8, 9 and 10, respectively.

Sandy Bridge possesses 256-bit registers with new address-
ing modes [33]. All SSE variants from the Pentium III to the
i5 have the limitation that wide-register operations place the
output in one of the input operands. The AVX instruction
set in Sandy Bridge permits a target register for the result
of many operations, thereby reducing the number of explicit

123

J Cryptogr Eng (2011) 1:187–199 197

Table 8 Timings in clock cycles for curve arithmetic operations on a
Sandy Bridge processor

Elliptic curve operations B-233 B-409

GCC ICC op/M GCC ICC op/M

Doubling (LD) 540 540 5.40 1,283 1,291 4.73

Addition (KIM Mixed) 953 932 9.32 2,362 2,352 8.62

Addition (LD Mixed) 959 953 9.53 2,395 2,413 8.84

Addition (LD General) 1,530 1,517 15.17 3,822 3,848 14.10

Halving 391 387 3.87 755 707 2.58

op/M denotes ratio to multiplication obtained from ICC

Table 9 Timings in 103 clock cycles for random curve scalar multi-
plication in the unknown-point scenario measured on a Sandy Bridge
processor

ω Scalar mult B-233 B-409

random curves GCC ICC GCC ICC

Double-and-add 189 185 771 768

3 Halve-and-add 165 163 596 610

(Dbl, Halve)-and-add 102 102 364 373

Double-and-add 182 178 738 738

4 Halve-and-add 160 157 557 574

(Dbl, Halve)-and-add 102 100 349 358

Side-channel resistant CURVE2251

scalar multiplication GCC ICC

Montgomery laddering 245 225

Table 10 Timings in 103 clock cycles for Koblitz curve scalar multi-
plication in the unknown-point scenario measured on a Sandy Bridge
processor

ω Scalar mult Koblitz curves K-233 K-409

GCC ICC GCC ICC

Alg. 5 83.8 84.0 325.9 325.5

3 Alg. 6 75.0 74.9 299.8 301.5

(τ, τ)-and-add 59.5 58.6 195.0 191.6

Alg. 7 64.6 63.3 196.3 194.5

Alg. 5 72.9 73.1 277.0 277.1

4 Alg. 6 69.3 67.8 261.5 262.4

(τ, τ)-and-add 53.3 50.8 167.5 165.2

Alg. 7 57.9 55.7 168.2 166.3

Alg. 5 69.4 69.9 255.6 256.2

5 Alg. 6 73.0 72.4 255.7 257.1

(τ, τ)-and-add 48.2 46.5 154.1 148.8

Alg. 7 54.9 51.0 154.0 150.3

move instructions required for operations of interest here and
allowing better register allocation due to higher free register
availability.

The initial AVX offerings target floating-point operations,
and only a portion of the code here benefits from the increased
width to 256 bits. The code for half-trace and multi-squaring,
for example, can exploit the 256-bit registers and explains a
significant portion of the 28–42% improvement over times
on the i5 for F2251 . The improvement for field multiplication
with the carryless multiplier is 20%, due to improved regis-
ter allocation and latency of the instruction. The method of
López–Dahab benefits from AVX addressing, but was imple-
mented with 128-bit operations due to the lack of a suitable
shift in the 256-bit registers. We remark that the times for
López–Dahab multiplication with the Intel compiler require
more investigation to understand the poor performance rela-
tive to the GNU compiler.

6 Conclusion and future work

In this work we achieve the fastest timings reported in the
open literature for software computation of scalar multipli-
cation in NIST and Edwards binary elliptic curves defined
at the 112-bit, 128-bit and 192-bit security levels. The two-
core implementation of scalar multiplication over the NIST
K-233 elliptic curve on the Westmere and Sandy Bridge pro-
cessors can be computed in less than 17.5 and 13.8µs, respec-
tively. These results are not only much faster than previous
software implementations of that curve, but are also quite
competitive with the computation time achieved by state-of-
the-art hardware accelerators working on similar or smaller
curves [1,25]. For both compatibility and dissemination pur-
poses we are currently in the process of benchmarking our
cryptographic library using the publicly available SUPER-
COP suite [7].

These fast timings were obtained through the usage of
the native carry-less multiplier available in the newest Intel
processors. At the same time, we strive to use the best algo-
rithmic techniques and the most efficient elliptic curve and
finite field arithmetic formulae. Further, we proposed effec-
tive parallel formulations of scalar multiplication algorithms
suitable for deployment in multi-core platforms.

The curves over binary fields permit relatively elegant par-
allelization with low synchronization cost, mainly due to the
efficient halving or τ−1 operations. Parallelizing at lower
levels in the arithmetic would be desirable, especially for
curves over prime fields. Grabher et al. [17] apply parallel-
ization for extension field multiplication, but times for a base
field multiplication in a 256-bit prime field are relatively slow
compared with Beuchat et al. [8]. On the other hand, a strat-
egy that applies to all curves performs point doubles in one
thread and point additions in another. The doubling thread

123

198 J Cryptogr Eng (2011) 1:187–199

stores intermediate values corresponding to nonzero digits
of the NAF; the addition thread processes these points as
they become available. Experimentally, synchronization cost
is low, but so is the expected acceleration. Against the fastest
times in Longa and Gebotys [34] for a curve over a 256-bit
prime field, the technique would offer roughly 17% improve-
ment, a disappointing return on processor investment.

To the best of our knowledge, the current scalar multipli-
cation speed record for a 128-bit security level single-core
software implementation is held by the work reported in [22],
where one scalar multiplication using a 4-Dimensional GLV
method on GLS elliptic curves with Jacobian coordinates is
computed in just 122 thousand cycles on a 2.7GHz Intel Core
i7-2620M processor.

On the other hand, using the methods described in this
paper, scalar multiplication on the NIST K-233 curve was
computed in 68 thousand cycles when implemented on a
Sandy Bridge processor (see Table 10). From this result, we
believe that by adjusting our library for handling field and
curve arithmetic on NIST K-283, a curve that enjoys 128-
bit security level, it should be possible to compute a single
scalar multiplication in a timing competitive with the best
implementation over a prime field.

We are currently working on computing scalar multipli-
cation on the NIST K-283 curve. After the completion of
this project we expect to be able to answer positively the
question of whether the most efficient elliptic curves defined
over binary fields are faster than their prime field counter-
parts when implemented in state-of-the-technology single-
core front end processors at the 128-bit security level.

The new native support for binary field multiplication
allowed our implementation to improve by 10–28% on the
previous speed record for side-channel-resistant scalar multi-
plication in random elliptic curves. It is hard to predict what
will be the superior strategy between a conventional non-
bitsliced or a bitsliced implementation on future revisions of
the target platform: the latency of the carry-less multiplier
instruction has clear room for improvement, while the new
AVX instruction set has 256-bit registers. An issue with the
current Sandy Bridge version of AVX is that xor throughput
for operations with register operands was decreased signif-
icantly from 3 operations per cycle in SSE to 1 operation
per cycle in AVX. The resulting performance of a bits-
liced implementation will ultimately rely on the amount
of work which can be scheduled to be done mostly in
registers.

Acknowledgments We wish to thank the University of Waterloo and
especially Professor Alfred Menezes for useful discussions related to
this work during a visit by three of the authors, where the idea of this
project was discussed, planned and a portion of the development phase
was done. Diego F. Aranha and Julio López thank CNPq, CAPES
and FAPESP for financial support. Jonathan Taverne, Armando Faz-
Hernández and Francisco Rodríguez-Henríquez thank CONACyT grant
60240 and UCMEXUS for financial support.

References

1. Ahmadi, O., Hankerson, D., Rodríguez-Henríquez, F.: Paral-
lel formulations of scalar multiplication on Koblitz curves.
J. UCS 14(3), 481–504 (2008)

2. Aranha, D.F., López, J., Hankerson, D.: Efficient software imple-
mentation of binary field arithmetic using vector instruction sets. In:
Abdalla, M., Barreto, P.S.L.M. (eds.) The First International Con-
ference on Cryptology and Information Security (LATINCRYPT
2010). Lecture Notes in Computer Science, vol. 6212, pp. 144–161
(2010)

3. Avanzi, R.M.: Another look at square roots (and other less common
operations) in fields of even characteristic. In: Adams, C.M., Miri,
A., Wiener, M.J. (eds.) 14th International Workshop on Selected
Areas in Cryptography (SAC 2007). Lecture Notes in Computer
Science, vol. 4876, pp. 138–154. Springer (2007)

4. Bellare, M. (ed.): Advances in Cryptology—CRYPTO 2000. Lec-
ture Notes in Computer Science, vol. 1880. Springer (2000)

5. Bernstein, D., Lange, T.: Analysis and optimization of ellip-
tic-curve single-scalar multiplication. In: Proceedings 8th Inter-
national Conference on Finite Fields and Applications (Fq8),
vol. 461, pp. 1–20. AMS (2008)

6. Bernstein, D.J.: Batch Binary Edwards. In: Halevi, S. (ed.)
Advances in Cryptology—CRYPTO 2009. Lecture Notes in Com-
puter Science, vol. 5677, pp. 317–336. Springer (2009)

7. Bernstein, D.J., Lange, T. (eds.) eBACS: ECRYPT Benchmarking
of Cryptographic Systems. http://bench.cr.yp.to. Accessed 25 Aug
2011

8. Beuchat, J.-L., Díaz, J., Mitsunari, S., Okamoto, E., Rodríguez-
Henríquez, F., Teruya, T.: High-speed software implementation
of the optimal ate pairing over Barreto-Naehrig curves. In: Joye,
M., Miyaji, A., Otsuka, A. (eds.) Pairing-Based Cryptography—
Pairing 2010. Lecture Notes in Computer Science, vol. 6487,
pp. 21–39 (2010)

9. Blake, I.F., Murty, V.K., Xu, G.: A note on window τ -NAF algo-
rithm. Inf. Process. Lett. 95(5), 496–502 (2005)

10. Bodrato, M.: Towards optimal Toom-Cook multiplication for uni-
variate and multivariate polynomials in characteristic 2 and 0. In:
Carlet, C., Sunar, B. (eds.) Arithmetic of Finite Fields (WAIFI
2007). Lecture Notes in Computer Science, vol. 4547, pp. 116–
133. Springer (2007)

11. Bos, J.W., Kleinjung, T., Niederhagen, R., Schwabe, P.: ECC2K-
130 on Cell CPUs. In: Bernstein, D.J., Lange, T. (eds.) 3rd Inter-
national Conference on Cryptology in Africa (AFRICACRYPT
2010). Lecture Notes in Computer Science, vol. 6055, pp. 225–
242. Springer (2010)

12. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM
Syst. J. 29(4), 526–538 (1990)

13. Dahmen, E., Okeya, K., Schepers, D.: Affine precomputation with
sole inversion in elliptic curve cryptography. In: Pieprzyk, J.,
Ghodosi, H., Dawson, E. (eds.) Information Security and Privacy
(ACISP 2007). Lecture Notes in Computer Science, vol. 4586,
pp. 245–258. Springer (2007)

14. Firasta, N., Buxton, M., Jinbo, P., Nasri, K., Kuo, S.: Intel AVX:
new frontiers in performance improvement and energy efficiency.
White paper. http://software.intel.com/

15. Fog, A.: Instruction tables: list of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs.
http://www.agner.org/optimize/instruction_tables.pdf. Accessed
01 Mar 2011

16. Fong, K., Hankerson, D., López, J., Menezes, A.: Field inversion
and point halving revisited. IEEE Trans. Comput. 53(8), 1047–
1059 (2004)

17. Grabher, P., Großschädl, J., Page, D.: On software parallel imple-
mentation of cryptographic pairings. Cryptology ePrint Archive,
Report 2008/205. http://eprint.iacr.org/ (2008)

123

http://bench.cr.yp.to
http://software.intel.com/
http://www.agner.org/optimize/instruction_tables.pdf
http://eprint.iacr.org/

J Cryptogr Eng (2011) 1:187–199 199

18. Guajardo, J., Paar, C.: Itoh-Tsujii inversion in standard basis
and its application in cryptography and codes. Des. Codes Cryp-
togr. 25(2), 207–216 (2002)

19. Gueron, S.: Intel Advanced Encryption Standard (AES) Instruc-
tions Set. White paper. http://software.intel.com/

20. Gueron, S., Kounavis, M.E.: Carry-less multiplication and its usage
for computing the GCM mode. White paper. http://software.intel.
com/

21. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic
Curve Cryptography. Springer, Secaucus (2004)

22. Hu, Z., Longa P., Xu, M.: Implementing 4-dimensional GLV
method on GLS elliptic curves with j-invariant 0. Des. Codes Cryp-
togr. (to appear)

23. Intel.: Intel SSE4 Programming Reference. Technical Report.
http://software.intel.com/

24. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative
inverses in GF (2m) using normal bases. Inf. Comput. 78(3), 171–
177 (1988)

25. Järvinen, K., Optimized FPGA-based elliptic curve cryptography
processor for high-speed applications. Integr. VLSI J. (to appear)

26. Järvinen, K.U., Skyttä, J.: On parallelization of high-speed
processors for elliptic curve cryptography. IEEE Trans. VLSI
Syst. 16(9), 1162–1175 (2008)

27. Järvinen, K.U., Skyttä, J.: Fast point multiplication on Koblitz
curves: Parallelization method and implementations. Micropro-
cess. Microsyst. Embedded Hardware Des. 33(2), 106–116
(2009)

28. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers
by automatic computers. Doklady Akad. Nauk SSSR 145, 293–294
(1962). Translation in Physics-Doklady 7, 595–596 (1963)

29. Kim, K.H., Kim, S.I.: A new method for speeding up arithmetic
on elliptic curves over binary fields. Cryptology ePrint Archive,
Report 2007/181. http://eprint.iacr.org/ (2007)

30. King, B. Rubin, B.: Improvements to the point halving algorithm.
In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) 9th Australasian
Conference on Information Security and Privacy (ACISP 2004).
Lecture Notes in Computer Science, vol. 3108, pp. 262–276.
Springer (2004)

31. Knudsen, E.: Elliptic scalar multiplication using point halving. In:
Lam, K., Okamoto, E. (eds.) Advances in Cryptology—ASIA-
CRYPT ’99. Lecture Notes in Computer Science, vol. 1716,
pp. 135–149. Springer (1999)

32. Koblitz, N.: CM-curves with good cryptographic properties. In:
Feigenbaum, J. (ed.) Advances in Cryptology—CRYPTO ’91. Lec-
ture Notes in Computer Science, vol. 576, pp. 279–287. Springer
(1992)

33. Lomont, C.: Introduction to Intel advanced vector extensions. Intel
Software Network. http://software.intel.com/file/37205 (2011)

34. Longa, P., Gebotys, C.H.: Efficient techniques for high-speed ellip-
tic curve cryptography. In: Mangard, S., Standaert, F.-X. (eds.)
Cryptographic Hardware and Embedded Systems (CHES 2010).
Lecture Notes in Computer Science, vol. 6225, pp. 80–94. Springer
(2010)

35. López, J., Dahab, R.: Fast multiplication on elliptic curves over
GF(2m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) First
International Workshop on Cryptographic Hardware and Embed-
ded Systems (CHES 99). Lecture Notes in Computer Science,
vol. 1717, pp. 316–327. Springer (1999)

36. López, J., Dahab, R.: High-speed software multiplication in
GF(2m). In: Roy, B.K., Okamoto, E. (eds.) 1st International Confer-
ence in Cryptology in India (INDOCRYPT 2000). Lecture Notes
in Computer Science, vol. 1977, pp. 203–212. Springer (2000)

37. Lutz, J., Hasan, M.A.: High performance FPGA based elliptic curve
cryptographic co-processor. In: International Conference on Infor-
mation Technology: Coding and Computing (ITCC’04), vol. 2,
pp. 486–492. IEEE Computer Society (2004)

38. Montgomery, P.L.: Five, six, and seven-term Karatsuba-like for-
mulae. IEEE Trans. Comput. 54(3), 362–369 (2005)

39. National Institute of Standards and Technology (NIST).: Recom-
mended Elliptic Curves for Federal Government Use. NIST Special
Publication. http://csrc.nist.gov/csrc/fedstandards.html. Accessed
July 1999

40. Schroeppel, R.: Elliptic curves: Twice as fast! Presentation at the
CRYPTO 2000 [4] Rump Session (2000)

41. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes
Cryptogr. 19(2-3), 195–249 (2000)

42. Taverne, J., Faz-Hernández, A., Aranha, D.F., Rodríguez-
Henríquez, F., Hankerson, D., López, J.: Software implementa-
tion of binary elliptic curves: impact of the carry-less multiplier on
scalar multiplication. In: International Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2011). Lecture Notes in
Computer Science, vol. 6917, Springer, New York (2011)

43. Wall, D.W.: Limits of instruction-level parallelism. In: 4th Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating System (ASPLOS 91), pp. 176–188. ACM,
New York (1991)

44. Wulf, W.A., McKee, S.A.: Hitting the memory wall: implica-
tions of the obvious. SIGARCH Comput. Architect. News 23(1),
20–24 (1995)

123

http://software.intel.com/
http://software.intel.com/
http://software.intel.com/
http://software.intel.com/
http://eprint.iacr.org/
http://software.intel.com/file/37205
http://csrc.nist.gov/csrc/fedstandards.html

	Speeding scalar multiplication over binary elliptic curves using the new carry-less multiplication instruction
	Abstract
	1 Introduction
	2 Binary field arithmetic
	2.1 Multiplication
	2.2 Squaring, square-root and multi-squaring
	2.3 Inversion
	2.4 Half-trace

	3 Random binary elliptic curves
	3.1 Sequential algorithms for random binary curves
	3.2 Parallel scalar multiplication on random binary curves
	3.3 Side-channel-resistant multiplication on random binary curves

	4 Koblitz elliptic curves
	4.1 Sequential algorithms for Koblitz curves
	4.2 Parallel algorithm for Koblitz curves

	5 Experimental results
	5.1 First look at Sandy Bridge implementation issues

	6 Conclusion and future work
	Acknowledgments
	References

